Date:

Name:

Multiple Choice: No Calculator unless otherwise indicated.

- 1) $\int \sec^2 x 2dx$
 - a) tan x + C
 - b) $\tan x 2x + C$

c)
$$\frac{tan^{3}x}{2} - x + C$$

- d) $2tanxsec^2x x + C$
- e) None of these

2) If
$$F(x) = \int_0^{x^2} \sqrt{t + 3} dt$$
, what is F'(x)

a)
$$\sqrt{x^2 + 3}$$

b)
$$\frac{1}{2\sqrt{x^2+3}}$$

c) $2x\sqrt{x^2+3}$

d)
$$\frac{2(x^2+3)}{3}$$

- e) None of these
- 3) Let $A = \int_0^1 cosx dx$. We estimate A using the LRAM, RRAM and Trapezoidal approximations with n = 100 subintervals. Which is true?
 - a) L < A < T < R
 - b) L < T < A < R
 - c) R < A < T < L
 - d) R < T < A < L
 - e) The order cannot be determined.

- 4) The graph of f(x) consists of line segments and quarter circles as sown in the graph above. What is the value of $\int_{-2}^{4} f(x) dx$?
 - a) $\frac{10-5\pi}{10}$
 - h) $\frac{10+5\pi}{10+5\pi}$

C)
$$\frac{4}{12-5\pi}$$

$$\frac{12}{4}$$

e) None of these

- 5) Let R be the region between the function $f(x) = x^3 + 6x^2 + 10x + 4$, the x-axis and the lines x = 0and x = 4. Using the Trapezoidal Rule, compute the area when there are 4 equal subdivisions. (Calculator)
 - a) 196
 - b) 288
 - c) 296
 - d) 396
 - e) None of these

6) What is
$$f(x)$$
 if $f'(x) = \frac{2x}{x^2-1}$ and $f(2) = 0$ (Calculator)

- a) $f(x) = \ln |x^2 1|$
- b) $f(x) = \ln|x^2 1| \ln 3$
- c) $f(x) = \ln|x^2 1| + \ln 3$
- d) $f(x) = 2lnx x^2$
- e) $f(x) = 2lnx x^2 2ln2 + 4$
- 7) What value of c on the closed interval [1, 3] satisfies the Mean Value Theorem for Integrals for f(x) = 2lnx? (calculator)
 - a) 2.592
 - b) 2.000
 - c) 1.912
 - d) 1.296
 - e) None of theses
- 8) Find the value of x at which the function $y = x^2$ reaches its average value on the interval [0, 10] (calculator)
 - a) 4.642
 - b) 5
 - c) 5.313
 - d) 5.774
 - e) 7.071

9) If $\int_1^3 f(x)dx = k$ and $\int_1^7 f(x)dx = -4$, what is the value of $\int_7^3 x + f(x)dx$?

- a) k+4
- b) k-4
- c) 16 k
- d) -16 + k
- e) -16 k

- 10) If a particle is moving in a straight line with a velocity of v(t) = 2t - 3 ft/sec and its position at t = 2 sec is -10ft, find its position at t = 5 sec.
 - a) -22 ft
 - b) 2 ft
 - c) 10 ft
 - d) 12 ft
 - e) 22 ft

11) Let $F(x) = \int_0^x \frac{10}{1+e^t} dt$. Which of the following statements is/are true? (calculator)

- ١. F'(0)=5
- II. F(2)<F(6)
- III. F is concave upward
- I only a)
- b) II only
- c) III only
- d) I and II only
- e) I and III only

Questions 12 & 13. The graph below consists of a quarter circle and two line segments and represents the velocity of an object during a 6-second interval.

- 12) The object's average speed in (units/sec) during the 6-second interval is
 - a)
 - $4\pi 3$

- 13) The object's acceleration (units/sec²) at t = 4.5 is
 - a) 0
 - b) -1
 - c) -2
 - d) -1/4
 - e) 4π 1/4

14) Using midpoint approximation with three subintervals, what is the approximate area of the function, $y = 6x - x^2$, on the interval [0, 6].

- a) 9
- b) 19
- c) 36
- d) 38
- e) 54
- 15) Using a Trapezoid approximation, what is the approximate area of the above function using 6 subintervals?
 - a) 17.5
 - b) 30
 - c) 35
 - d) 36
 - e) 6

- 4**π**+3
- 6
- b) 6
- c) -1
- d) -1/3
- e) 1

Name: _____

Date:

Answer Sheet

1) B	2) C	3) D	4) A	5) C
6) B	7) C	8) D	9) D	10) B
11) D	12) A	13) c	14) D	15) C

Free Response question #1

2 points 1 point for FTC antiderivative 1 point for answer The integral can be computed using the FTC and some basic properties $\int_{-1}^{1} (2f'(x) + 3f''(x))dx = 2f(0) - 2f(-1) + 3f'(0) - 3f'(-1) = 13$ 3 points 1 point for tangent line 1 point for approximation 1 point for "less" with reason y - 3 = -3(x+2). The tangent line is a linear approximation for f near (-2, 3) so $f(-2.1) \approx 3(-2.1) - 3 = 3.3$ Since f is concave up for -2.1 < x < 2, the actual value of f(2.1) is greater than 3.3 2 points 1 point for MVT reference 1 point for value of r $g'(c) = \frac{g(b) - g(a)}{b - a}$ Since f' is differentiable on (0, 1), there exists a point c, with 0 < c < 1, such that $f''(c) = \frac{f'(1) - f'(0)}{1 - 0} = \frac{5 - 3}{1} = 2$ So r = 2 works. 2 points 1 point for "no" with reference to MVT 1 point for correct reasoning Using the MVT on the interval (-1, 0) we can guarantee the existence of b with -1 < b < 0, such that $f''(b) = \frac{f'(0) - f'(-1)}{0 - (-1)} = \frac{3 - 0}{1} = 3$ From part c we know that for some c with 0 < c < 1, f''(b)=2. Since b < c and f''(b) > f''(c), the function cannot be increasing for all x on the interval (-1, 1).

Name: _____

Date: __

FR Question #2

2 points				
1 point for setting up the sum				
1 point for the answer with units				
5(5) + 5(20) + 10(30) + 10(15) + 5(0) = 575 GAL				
3 points				
1 point for explanation				
1 use of Reimann sum				
1 answer				
$\frac{1}{20}\int_{10}^{30} R(t)dt$ is the average rate of change of the leak over the 20-minute period, $10 \le t \le 30$.				
$\frac{1}{20}\int_{10}^{30} R(t)dt = \frac{1}{20} \left[10(30) + 10(15) \right] = 22.5 gal /\min$				
$R'(25) = \frac{R(30) - R(20)}{30 - 20} = \frac{15 - 30}{10} = -1.5 gal/min$ There are multiple answers (2 points)				
2 Points				
1 Point for setting Q'(t) = 0				
1 point for answer with reasoning				
T = 18.805 min				
$Q''(t) = -16.78 \sin (0.15t - 1.25)(.15)^2$				
And Q"(18.805) < 0 thus the leak is at a maximum rate at t = 18.805 min.				