Multiple Choice: No Calculator unless otherwise indicated.

1) $\int \sec ^{2} x-2 d x$
a) $\tan x+C$
b) $\tan x-2 x+C$
c) $\frac{\tan ^{3} x}{3}-x+C$
d) $2 \tan ^{2} \sec ^{2} x-x+C$
e) None of these
2) If $\mathrm{F}(\mathrm{x})=\int_{0}^{x^{2}} \sqrt{t+3} d t$, what is $\mathrm{F}^{\prime}(\mathrm{x})$
a) $\sqrt{x^{2}+3}$
b) $\frac{1}{2 \sqrt{x^{2}+3}}$
c) $2 x \sqrt{x^{2}+3}$
d) $\frac{2\left(x^{2}+3\right)}{3}$
e) None of these
3) Let $A=\int_{0}^{1} \cos x d x$. We estimate A using the LRAM, RRAM and Trapezoidal approximations with $\mathrm{n}=100$ subintervals. Which is true?
a) $L<A<T<R$
b) $L<$ T $<$ A $<$ R
c) $R<$ A $<$ T $<$ L
d) $R<$ T $<$ A $<$ L
e) The order cannot be determined.

4) The graph of $f(x)$ consists of line segments and quarter circles as sown in the graph above. What is the value of $\int_{-3}^{4} f(x) d x$?
a) $\frac{10-5 \pi}{4}$
b) $\frac{10+5 \pi}{4}$
c) $\frac{12+5 \pi}{4}$
d) $\frac{12-5 \pi}{4}$
e) None of these
5) Let R be the region between the function $f(x)=$ $x^{3}+6 x^{2}+10 x+4$, the x-axis and the lines $\mathrm{x}=0$ and $x=4$. Using the Trapezoidal Rule, compute the area when there are 4 equal subdivisions.
(Calculator)
a) 196
b) 288
c) 296
d) 396
e) None of these
6) What is $\mathrm{f}(\mathrm{x})$ if $\mathrm{f}^{\prime}(\mathrm{x})=\frac{2 x}{x^{2}-1}$ and $\mathrm{f}(2)=0$ (Calculator)
a) $f(x)=\ln \left|x^{2}-1\right|$
b) $f(x)=\ln \left|x^{2}-1\right|-\ln 3$
c) $f(x)=\ln \left|x^{2}-1\right|+\ln 3$
d) $f(x)=2 \ln x-x^{2}$
e) $f(x)=2 \ln x-x^{2}-2 \ln 2+4$
7) What value of c on the closed interval $[1,3]$ satisfies the Mean Value Theorem for Integrals for $f(x)=$ $2 \ln x$? (calculator)
a) 2.592
b) 2.000
c) 1.912
d) 1.296
e) None of theses
8) Find the value of x at which the function $y=x^{2}$ reaches its average value on the interval $[0,10]$ (calculator)
a) 4.642
b) 5
c) 5.313
d) 5.774
e) 7.071
9) If $\int_{1}^{3} f(x) d x=k$ and $\int_{1}^{7} f(x) d x=-4$, what is the value of $\int_{7}^{3} x+f(x) d x$?
a) $k+4$
b) $\mathrm{k}-4$
c) $16-\mathrm{k}$
d) $-16+\mathrm{k}$
e) $-16-k$
10) If a particle is moving in a straight line with a velocity of $v(t)=2 t-3 \mathrm{ft} / \mathrm{sec}$ and its position at t $=2 \mathrm{sec}$ is -10 ft , find its position at $\mathrm{t}=5 \mathrm{sec}$.
a) -22 ft
b) 2 ft
c) 10 ft
d) 12 ft
e) 22 ft
11) Let $F(x)=\int_{0}^{x} \frac{10}{1+e^{t}} d t$. Which of the following statements is/are true? (calculator)
I. $\quad F^{\prime}(0)=5$
II. $\quad F(2)<F(6)$
III. F is concave upward
a) I only
b) II only
c) III only
d) I and II only
e) I and III only

Questions $12 \& 13$. The graph below consists of a quarter circle and two line segments and represents the velocity of an object during a 6 -second interval.

12) The object's average speed in (units/sec) during the 6 -second interval is
a) $\frac{4 \pi+3}{6}$
b) $\frac{4 \pi-3}{6}$
c) -1
d) $-1 / 3$
e) 1
13) The object's acceleration (units $/ \mathrm{sec}^{2}$) at $\mathrm{t}=4.5$ is
a) 0
b) -1
c) -2
d) $-1 / 4$
e) $4 \pi-1 / 4$
14) Using midpoint approximation with three subintervals, what is the approximate area of the function, $y=6 x-x^{2}$, on the interval $[0,6]$.
a) 9
b) 19
c) 36
d) 38
e) 54
15) Using a Trapezoid approximation, what is the approximate area of the above function using 6 subintervals?
a) 17.5
b) 30
c) 35
d) 36
e) 6
\qquad

Answer Sheet

1) B	2) C	3) D	4) A	5) C
6) B	7) C	8) D	9) D	10) B
11) D	12) A	13) c	14) D	15) C

Free Response question \#1

2 points
1 point for FTC antiderivative
1 point for answer

The integral can be computed using the FTC and some basic properties
$\int^{0}\left(2 f^{\prime}(x)+3 f^{\prime \prime}(x)\right) d x=2 f(0)-2 f(-1)+3 f^{\prime}(0)-3 f^{\prime}(-1)=13$
-1
3 points
1 point for tangent line
1 point for approximation
1 point for "less" with reason
$y-3=-3(x+2)$.
The tangent line is a linear approximation for f near $(-2,3)$ so

$$
f(-2.1) \approx 3(-2.1)-3=3.3
$$

Since f is concave up for $-2.1<x<2$, the actual value of $f(2.1)$ is greater than 3.3
2 points
1 point for MVT reference
1 point for value of r

$$
g^{\prime}(c)=\frac{g(b)-g(a)}{b-a}
$$

Since f^{\prime} is differentiable on $(0,1)$, there exists a point c, with $0<c<1$, such that

$$
f^{\prime \prime}(c)=\frac{f^{\prime}(1)-f^{\prime}(0)}{1-0}=\frac{5-3}{1}=2
$$

So $r=2$ works.

2 points

1 point for "no" with reference to MVT
1 point for correct reasoning
Using the MVT on the interval $(-1,0)$ we can guarantee the existence of b with $-1<b<0$, such that

$$
f^{\prime \prime}(b)=\frac{f^{\prime}(0)-f^{\prime}(-1)}{0-(-1)}=\frac{3-0}{1}=3
$$

From part c we know that for some c with $0<c<1, f^{\prime \prime}(b)=2$. Since $b<c$ and $f^{\prime \prime}(b)>f^{\prime \prime}(c)$, the function cannot be increasing for all x on the interval $(-1,1)$.

FR Question \#2

2 points 1 point for setting up the sum 1 point for the answer with units
3 points 1 point for explanation 1 use of Reimann sum 1 answer
$\frac{1}{20} \int_{10}^{30} R(5)+5(20)+10(30)+10(15)+5(0)=575 \mathrm{GAL}$
$\frac{1}{20} \int_{10}^{30} R(t) d t=\frac{1}{20}[10(30)+10(15)]=22.5 \mathrm{gal} / \mathrm{min}$
$R^{\prime}(25)=\frac{R(30)-R(20)}{30-20}=\frac{15-30}{10}=-1.5 \mathrm{gal} / \mathrm{min}$ There are multiple answers $(2$ points $)$
2 Points 1 1 1 Point for setting $\mathrm{Q}^{\prime}(\mathrm{t})=0$ $\mathrm{~T}=18.805$ min
$\mathrm{Q}^{\prime \prime}(\mathrm{t})=-16.78$ sin $(0.15 \mathrm{t}-1.25)(.15)^{2}$
And $\mathrm{Q}^{\prime \prime}(18.805)<0$ thus the leak is at a maximum rate at $\mathrm{t}=18.805$ min..

