Problem Set Four – Integration
AP Calculus AB

Name: ____________________________
Date: ___________________________

Multiple Choice: No Calculator unless otherwise indicated.

1) \(\int \sec^2 x - 2 \, dx \)
 a) \(\tan x + C \)
 b) \(\tan x - 2x + C \)
 c) \(\frac{\tan^3 x}{3} - x + C \)
 d) \(2\tan x \sec^2 x - x + C \)
 e) None of these

2) If \(F(x) = \int_0^\infty \sqrt{t^2 + 3} \, dt \), what is \(F'(x) \)
 a) \(\sqrt{x^2 + 3} \)
 b) \(\frac{1}{2\sqrt{x^2 + 3}} \)
 c) \(2x\sqrt{x^2 + 3} \)
 d) \(\frac{2(x^2 + 3)}{3} \)
 e) None of these

3) Let \(A = \int_0^1 \cos x \, dx \). We estimate \(A \) using the LRAM, RRAM and Trapezoidal approximations with \(n = 100 \) subintervals. Which is true?
 a) \(L < A < T < R \)
 b) \(L < T < A < R \)
 c) \(R < A < T < L \)
 d) \(R < T < A < L \)
 e) The order cannot be determined.

4) The graph of \(f(x) \) consists of line segments and quarter circles as sown in the graph above. What is the value of \(\int_{-3}^{4} f(x) \, dx \)?
 a) \(\frac{10 - 5\pi}{4} \)
 b) \(\frac{10 + 5\pi}{4} \)
 c) \(\frac{12 + 5\pi}{4} \)
 d) \(\frac{12 - 5\pi}{4} \)
 e) None of these

5) Let \(R \) be the region between the function \(f(x) = x^3 + 6x^2 + 10x + 4 \), the \(x \)-axis and the lines \(x = 0 \) and \(x = 4 \). Using the Trapezoidal Rule, compute the area when there are 4 equal subdivisions.
 (Calculator)
 a) 196
 b) 288
 c) 296
 d) 396
 e) None of these

6) What is \(f(x) \) if \(f'(x) = \frac{2x}{x^2 - 1} \) and \(f(2) = 0 \) (Calculator)
 a) \(f(x) = \ln |x^2 - 1| \)
 b) \(f(x) = \ln |x^2 - 1| - \ln 3 \)
 c) \(f(x) = \ln |x^2 - 1| + \ln 3 \)
 d) \(f(x) = 2\ln x - x^2 \)
 e) \(f(x) = 2\ln x - x^2 - 2\ln 2 + 4 \)

7) What value of \(c \) on the closed interval \([1, 3]\) satisfies the Mean Value Theorem for Integrals for \(f(x) = 2\ln x \)? (calculator)
 a) 2.592
 b) 2.000
 c) 1.912
 d) 1.296
 e) None of these

8) Find the value of \(x \) at which the function \(y = x^2 \) reaches its average value on the interval \([0, 10]\) (calculator)
 a) 4.642
 b) 5
 c) 5.313
 d) 5.774
 e) 7.071

9) If \(\int_1^3 f(x) \, dx = k \) and \(\int_1^7 f(x) \, dx = -4 \), what is the value of \(\int_7^x x + f(x) \, dx \)?
 a) \(k + 4 \)
 b) \(k - 4 \)
 c) \(16 - k \)
 d) \(-16 + k \)
 e) \(-16 - k \)
Problem Set Four – Integration
Name: ____________________________
AP Calculus AB
Date: ___________________________

10) If a particle is moving in a straight line with a
velocity of \(v(t) = 2t - 3 \) ft/sec and its position at \(t = 2 \) sec is -10 ft, find its position at \(t = 5 \) sec.
 a) -22 ft
 b) 2 ft
 c) 10 ft
 d) 12 ft
 e) 22 ft

11) Let \(F(x) = \int_0^x \frac{10}{1+e^t} \, dt \). Which of the following statements is/are true? (calculator)
 I. \(F'(0) = 5 \)
 II. \(F(2) < F(6) \)
 III. \(F \) is concave upward
 a) I only
 b) II only
 c) III only
 d) I and II only
 e) I and III only

Questions 12 & 13. The graph below consists of a quarter circle and two line segments and represents the velocity of an object during a 6-second interval.

12) The object’s average speed in (units/sec) during the 6-second interval is
 a) \(\frac{4\pi + 3}{6} \)
 b) \(\frac{4\pi - 3}{6} \)
 c) -1
 d) -1/3
 e) 1

13) The object’s acceleration (units/sec\(^2\)) at \(t = 4.5 \) is
 a) 0
 b) -1
 c) -2
 d) -1/4
 e) \(4\pi - 1/4 \)

14) Using midpoint approximation with three sub-intervals, what is the approximate area of the function, \(y = 6x - x^2 \), on the interval \([0, 6]\).
 a) 9
 b) 19
 c) 36
 d) 38
 e) 54

15) Using a Trapezoid approximation, what is the approximate area of the above function using 6 subintervals?
 a) 17.5
 b) 30
 c) 35
 d) 36
 e) 6
Problem Set Four – Integration
AP Calculus AB

Name: ____________________________
Date: ___________________________

Answer Sheet

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1) B</td>
<td>2) C</td>
<td>3) D</td>
<td>4) A</td>
<td>5) C</td>
</tr>
<tr>
<td>6) B</td>
<td>7) C</td>
<td>8) D</td>
<td>9) D</td>
<td>10) B</td>
</tr>
</tbody>
</table>

Free Response question #1

2 points
1 point for FTC antiderivative
1 point for answer

The integral can be computed using the FTC and some basic properties
\[\int_{-1}^{0} (2f'(x) + 3f''(x)) \, dx = 2f(0) - 2f(-1) + 3f'(0) - 3f'(-1) = 13 \]

3 points
1 point for tangent line
1 point for approximation
1 point for “less” with reason

The tangent line is a linear approximation for \(f \) near \((-2, 3)\) so
\[f(-2.1) \approx 3(-2.1) - 3 = 3.3 \]

Since \(f \) is concave up for \(-2.1 < x < 2\), the actual value of \(f(2.1) \) is greater than 3.3

2 points
1 point for MVT reference
1 point for value of \(r \)

\[g'(c) = \frac{g(b) - g(a)}{b - a} \]

Since \(f' \) is differentiable on \((0, 1)\), there exists a point \(c \), with \(0 < c < 1 \), such that
\[f''(c) = \frac{f'(1) - f'(0)}{1 - 0} = \frac{5 - 3}{1} = 2 \]

So \(r = 2 \) works.

2 points
1 point for “no” with reference to MVT
1 point for correct reasoning

Using the MVT on the interval \((-1, 0)\) we can guarantee the existence of \(b \) with \(-1 < b < 0\), such that
\[f''(b) = \frac{f'(0) - f'(-1)}{0 - (-1)} = \frac{3 - 0}{1} = 3 \]

From part c we know that for some \(c \) with \(0 < c < 1 \), \(f''(b) = 2 \). Since \(b < c \) and \(f''(b) > f''(c) \), the function cannot be increasing for all \(x \) on the interval \((-1, 1)\).
Problem Set Four – Integration
Name: ____________________________
AP Calculus AB
Date: ___________________________

FR Question #2

<table>
<thead>
<tr>
<th>2 points</th>
<th>1 point for setting up the sum</th>
<th>1 point for the answer with units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$5(5) + 5(20) + 10(30) + 10(15) + 5(0) = 575$ GAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 points</th>
<th>1 point for explanation</th>
<th>1 use of Reimann sum</th>
<th>1 answer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\frac{1}{20} \int_{10}^{30} R(t) , dt$ is the average rate of change of the leak over the 20-minute period, $10 \leq t \leq 30.$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\frac{1}{20} \int_{10}^{30} R(t) , dt = \frac{1}{20} [10(30) + 10(15)] = 22.5$ gal/ min</td>
</tr>
</tbody>
</table>

$R'(25) = \frac{R(30) - R(20)}{30 - 20} = \frac{15 - 30}{10} = -1.5$ gal/min
There are multiple answers (2 points)

<table>
<thead>
<tr>
<th>2 Points</th>
<th>1 Point for setting $Q'(t) = 0$</th>
<th>1 point for answer with reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$T = 18.805$ min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Q''(t) = -1.678 \sin (0.15t - 1.25)(.15)^2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>And $Q''(18.805) < 0$ thus the leak is at a maximum rate at $t = 18.805$ min.</td>
</tr>
</tbody>
</table>