

1. The asymptotes of the graph of the parametric equations $x = \frac{1}{t}$, $y = \frac{t}{t+1}$ are

- x = 0 only
- (C) x = -1, y = 0

- x = 0, y = 1(E)

The area of the closed region bounded by the polar graph of $r = \sqrt{3 + \cos \theta}$ is given by the integral

- (A) $\int_0^{2\pi} \sqrt{3 + \cos \theta} \, d\theta$
- (B) $\int_0^{\pi} \sqrt{3 + \cos \theta} \, d\theta$ (C) $2 \int_0^{\pi/2} (3 + \cos \theta) \, d\theta$
- (D) $\int_0^{\pi} (3+\cos\theta)d\theta$
- (E) $2\int_{0}^{\pi/2} \sqrt{3+\cos\theta} d\theta$

3. Which of the following integrals gives the length of the graph of $y = \tan x$ between x = a and

(C)
$$\int_a^b \sqrt{1+\sec^2 x} \, dx$$

(D) $\int_{a}^{b} \sqrt{1 + \tan^2 x} \, dx$

 $(E) \int_a^b \sqrt{1 + \sec^4 x} \, dx$

4. The length of the curve $y = \ln \sec x$ from x = 0 to x = b, where $0 < b < \frac{\pi}{2}$, may be expressed by (C) $\int_0^b (\sec x \tan x) dx$ which of the following integrals?

(A) $\int_0^b \sec x dx$

(D) $\int_a^b \sqrt{1 + (\ln \sec x)^2} dx$

(B) $\int_{a}^{b} \sec^{2} x dx$

(E) $\int_0^b \sqrt{1 + \left(\sec^2 x \tan^2 x\right)} dx$

5. If $x = t^2 - 1$ and $y = 2e^t$, then $\frac{dy}{dx} =$

 $\widehat{\text{(A)}} \frac{e^t}{t} \qquad \qquad \text{(B)} \quad \frac{2e^t}{t} \qquad \qquad \text{(C)} \quad \frac{e^{|t|}}{t^2} \qquad \qquad \text{(D)} \quad \frac{4e^t}{2t-1}$ The area of the region enclosed by the polar curve $r = 1 - \cos \theta$ is

- (A) $\frac{3}{4}\pi$

- (E) 3π

7. A particle moves in the xy-plane so that at any time t its coordinates are $x = t^2 - 1$ and $y = t^4 - 2t^3$. At t=1, its acceleration vector is

- (A) (0,-1)
- (B) (0,12)
- (C) (2,-2)
- (D) (2,0)
- (E) (2,8)

The area of the region enclosed by the polar curve $r = \sin(2\theta)$ for $0 \le \theta \le \frac{\pi}{2}$ is

- (B) $\frac{1}{2}$
- (C) 1

9. If $x=t^3-t$ and $y=\sqrt{3t+1}$, then $\frac{dy}{dx}$ at t=1 is

- (B) $\frac{3}{8}$
- (C) $\frac{3}{4}$ (D) $\frac{8}{3}$
- (E) 8

11. If
$$x = t^2 + 1$$
 and $y = t^3$, then $\frac{d^2y}{dx^2} = \frac{1}{2}$

- (C) 3t

12. The length of the curve determined by the equations
$$x = t^2$$
 and $y = t$ from $t = 0$ to $t = 4$ is

(A)
$$\int_0^4 \sqrt{4t+1} \ dt$$

(D)
$$\int_{0}^{4} \sqrt{4t^2 + 1} \ dt$$

(B)
$$2\int_{0}^{4} \sqrt{t^2 + 1} dt$$

(E)
$$2\pi \int_0^4 \sqrt{4t^2 + 1} \ dt$$

(C)
$$\int_0^4 \sqrt{2t^2 + 1} \ dt$$

- (A) 20.086
- (B) 0.342
- (C) -0.005
- (D) -0.011
- (E) -0.033
- 14. If a particle moves in the xy-plane so that at time t > 0 its position vector is $(\ln(t^2 + 2t), 2t^2)$, then at time t = 2, its velocity vector is

- (B) $\left(\frac{3}{4}, 4\right)$ (C) $\left(\frac{1}{8}, 8\right)$ (D) $\left(\frac{1}{8}, 4\right)$ (E) $\left(-\frac{5}{16}, 4\right)$

15. If
$$x = e^{2t}$$
 and $y = \sin(2t)$, then $\frac{dy}{dx} =$

- (B) $\frac{e^{2t}}{\cos(2t)}$ (C) $\frac{\sin(2t)}{2e^{2t}}$ (D) $\frac{\cos(2t)}{2e^{2t}}$ (E) $\frac{\cos(2t)}{e^{2t}}$

16. The length of the path described by the parametric equations
$$x = \cos^3 t$$
 and $y = \sin^3 t$, for $0 \le t \le \frac{\pi}{2}$, is given by

(C) $\int_0^{\frac{\pi}{2}} \sqrt{9\cos^4 t + 9\sin^4 t} dt$

- (A) $\int_{0}^{\frac{\pi}{2}} \sqrt{3\cos^2 t + 3\sin^2 t} dt$
- (D) $\int_0^{\frac{\pi}{2}} \sqrt{9\cos^4 t \sin^2 t + 9\sin^4 t \cos^2 t} dt$
- (B) $\int_{0}^{\frac{\pi}{2}} \sqrt{-3\cos^{2}t \sin t + 3\sin^{2}t \cos t} dt$ (E) $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos^{6}t + \sin^{6}t} dt$

Set 4

$$y = \frac{t}{t+1}$$

$$\frac{dy}{dx} = \frac{(t+1)-t}{(t+1)^{2}}$$

$$\frac{dy}{dx} = \frac{1}{(t+1)^{2}}$$

$$\frac{dy}{(t+1)^{2}}$$

$$\frac{dy}{dx} = \frac{1}{(t+1)^{2}}$$

$$\frac{dy}{(t+1)^{2}}$$

$$\frac{dy}$$

8)
$$\sqrt{\frac{1}{2}} \int_{0}^{\infty} \left(\sin(2\theta) \right)^{n} d\theta = \frac{\pi}{8}$$

9)
$$\frac{1}{2}(3+1)^{-1/2} \cdot 3 = \frac{3}{2\sqrt{3}+1} \cdot \frac{3}{2\cdot 2} = \frac{3}{4} \cdot \frac{3}{2-8}$$

$$\frac{3t^{2}}{2t} = \frac{3t}{2} = \frac{3}{2}t \qquad \frac{3}{2} = \frac{3}{2$$

$$\int_{0}^{4} \sqrt{(2t)^{2} + 1^{2}} dt$$

13)
$$\frac{dy}{dx} = \frac{t(-e^{-t}) + e^{-t}}{e^{t}}$$

$$\frac{3 = e^{t}}{\ln 3} = \lim_{t \to \infty} t$$

$$\frac{(\ln 3)(-e^{-\ln 3}) + e^{-\ln 3}}{e^{\ln 3}} = -.011$$

$$(2n(t^{2}+2t), 2t^{2})$$

$$< \frac{1}{t^{2}+2t}, 2t^{2}, 4t^{2}$$

$$< \frac{1}{t^{2}+2t}, 4t^{2}, 4t^{2}$$

$$x = e^{\lambda t} \quad y = \sin(\lambda t)$$

$$\frac{dy}{dx} = \frac{x \cos(\lambda t)}{x e^{\lambda t}} = \frac{\cos(\lambda t)}{e^{\lambda t}}$$

$$(\cos t)^{3}$$

$$[3(\cos t)^{2} - \sin t]^{2}$$

$$9 \cos^{3} t \sin^{2} t$$