

$$f(X) = (x-2)(x-3)^{2}$$

$$f(X) = X^{3} - 8X^{2} + 21X - 18$$

$$f'(X) = 3X^{2} - 16X + 21$$

$$(3X-7)(X-3) = 0$$

$$X = \frac{7}{3} \text{ A} 3$$

$$f'(X) + \frac{7}{3} = 0$$

$$X = \frac{7}{3} = 0$$

One relative max at x=-3
(B)

1)
$$f(x) = x^3 - 3x^2 + 12$$
 [-2,4]
 $f'(x) = 3x^2 - 6x$
 $3x(x-2)$
 $x = 0$ $x = 2$
 $x =$

8)
$$f(x) = (x)(\ln x)$$

 $f'(x) = (x)(\frac{1}{x}) + (\ln x)(1) = 1 + \ln x$
 $f'(x) = \ln x + 1$ $\ln x + y = 0$
 $\ln x = -1$ $\ln x = e^{-1}$
 e $f(\frac{1}{e}) = \frac{1}{e}(\ln \frac{1}{e}) = -1$ where

 $f'(x) = 2x + e^{-2x} - 2$ $f'(0) = 2(0) + e^{-2(0)} - 2$ 0 + 1 - 2 f(6) = -2 f is decreasing

- 10. If g is a differentiable function such that g(x) < 0 for all real numbers x and if $f'(x) = (x^2 4)g(x)$, which of the following is true?
 - (A) f has a relative maximum at x=-2 and a relative minimum at x=2.
 - (B) f has a relative minimum at x=-2 and a relative maximum at x=2.
 - (C) f has relative minima at x=-2 and at x=2.
 - (D) f has relative maxima at x=-2 and at x=2.
 - (E) It cannot be determined if f has any relative extrema.

Scott-Ri