FRQ 1: Inactive

AP ${ }^{\oplus}$ CALCULUS BC 2010 SCORING GUIDELINES (Form B)

Question 5

Let f and g be the functions defined by $f(x)=\frac{1}{x}$ and $g(x)=\frac{4 x}{1+4 x^{2}}$, for all $x>0$.
(a) Find the absolute maximum value of g on the open interval $(0, \infty)$ if the maximum exists. Find the absolute minimum value of g on the open interval $(0, \infty)$ if the minimum exists. Justify your answers.
(b) Find the area of the unbounded region in the first quadrant to the right of the vertical line $x=1$, below the graph of f, and above the graph of g.

FRQ 1: Inactive

AP ${ }^{\oplus}$ CALCULUS BC 2010 SCORING GUIDELINES (Form B)

Question 5

Let f and g be the functions defined by $f(x)=\frac{1}{x}$ and $g(x)=\frac{4 x}{1+4 x^{2}}$, for all $x>0$.
(a) Find the absolute maximum value of g on the open interval $(0, \infty)$ if the maximum exists. Find the absolute minimum value of g on the open interval $(0, \infty)$ if the minimum exists. Justify your answers.
(b) Find the area of the unbounded region in the first quadrant to the right of the vertical line $x=1$, below the graph of f, and above the graph of g.

AP ${ }^{\circledR}$ CALCULUS BC 2006 SCORING GUIDELINES

Question 1

Let R be the shaded region bounded by the graph of $y=\ln x$ and the line $y=x-2$, as shown above.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is rotated about the horizontal line $y=-3$.
(c) Write, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when R is rotated about the y-axis.

FRQ 2: Active

AP ${ }^{\text {® }}$ CALCULUS BC 2006 SCORING GUIDELINES

Question 1

Let R be the shaded region bounded by the graph of $y=\ln x$ and the line $y=x-2$, as shown above.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is rotated about the horizontal line $y=-3$.
(c) Write, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when R is rotated about the y-axis.

Question 6

x	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
$f(x)$	-1	-4	-6	-7	-6	-4	-1
$f^{\prime}(x)$	-7	-5	-3	0	3	5	7

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f^{\prime} for selected points x in the closed interval $-1.5 \leq x \leq 1.5$. The second derivative of f has the property that $f^{\prime \prime}(x)>0$ for $-1.5 \leq x \leq 1.5$.
(a) Evaluate $\int_{0}^{1.5}\left(3 f^{\prime}(x)+4\right) d x$. Show the work that leads to your answer.
(b) Write an equation of the line tangent to the graph of f at the point where $x=1$. Use this line to approximate the value of $f(1.2)$. Is this approximation greater than or less than the actual value of $f(1.2)$? Give a reason for your answer.
(c) Find a positive real number r having the property that there must exist a value c with $0<c<0.5$ and $f^{\prime \prime}(c)=r$. Give a reason for your answer.
(d) Let g be the function given by $g(x)= \begin{cases}2 x^{2}-x-7 & \text { for } x<0 \\ 2 x^{2}+x-7 & \text { for } x \geq 0 .\end{cases}$

The graph of g passes through each of the points $(x, f(x))$ given in the table above. Is it possible that f and g are the same function? Give a reason for your answer.

FRQ 3: Inactive

AP ${ }^{\circledR}$ CALCULUS AB 2002 SCORING GUIDELINES

Question 6

x	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
$f(x)$	-1	-4	-6	-7	-6	-4	-1
$f^{\prime}(x)$	-7	-5	-3	0	3	5	7

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f^{\prime} for selected points x in the closed interval $-1.5 \leq x \leq 1.5$. The second derivative of f has the property that $f^{\prime \prime}(x)>0$ for $-1.5 \leq x \leq 1.5$.
(a) Evaluate $\int_{0}^{1.5}\left(3 f^{\prime}(x)+4\right) d x$. Show the work that leads to your answer.
(b) Write an equation of the line tangent to the graph of f at the point where $x=1$. Use this line to approximate the value of $f(1.2)$. Is this approximation greater than or less than the actual value of $f(1.2)$?
Give a reason for your answer.
(c) Find a positive real number r having the property that there must exist a value c with $0<c<0.5$ and $f^{\prime \prime}(c)=r$. Give a reason for your answer.
(d) Let g be the function given by $g(x)= \begin{cases}2 x^{2}-x-7 & \text { for } x<0 \\ 2 x^{2}+x-7 & \text { for } x \geq 0 .\end{cases}$

The graph of g passes through each of the points $(x, f(x))$ given in the table above. Is it possible that f and g are the same function? Give a reason for your answer.

FRQ 4: Inactive

AP ${ }^{\circledR}$ CALCULUS BC
 2005 SCORING GUIDELINES (Form B)

Question 6

Consider the graph of the function f given by $f(x)=\frac{1}{x+2}$ for $x \geq 0$, as shown in the figure above. Let R be the region bounded by the graph of f, the x - and y-axes, and the vertical line $x=k$, where $k \geq 0$.
(a) Find the area of R in terms of k.
(b) Find the volume of the solid generated when R is revolved about the x-axis in terms of k.

(c) Let S be the unbounded region in the first quadrant to the right of the vertical line $x=k$ and below the graph of f, as shown in the figure above. Find all values of k such that the volume of the solid generated when S is revolved about the x-axis is equal to the volume of the solid found in part (b).

FRQ 4: Inactive

AP ${ }^{\text {® }}$ CALCULUS BC 2005 SCORING GUIDELINES (Form B)

Question 6

Consider the graph of the function f given by $f(x)=\frac{1}{x+2}$ for $x \geq 0$, as shown in the figure above. Let R be the region bounded by the graph of f, the x - and y-axes, and the vertical line $x=k$, where $k \geq 0$.
(a) Find the area of R in terms of k.
(b) Find the volume of the solid generated when R is revolved about the x-axis in terms of k.

(c) Let S be the unbounded region in the first quadrant to the right of the vertical line $x=k$ and below the graph of f, as shown in the figure above. Find all values of k such that the volume of the solid generated when S is revolved about the x-axis is equal to the volume of the solid found in part (b).

FRQ 1 Rubric

(a) $g^{\prime}(x)=\frac{4\left(1+4 x^{2}\right)-4 x(8 x)}{\left(1+4 x^{2}\right)^{2}}=\frac{4\left(1-4 x^{2}\right)}{\left(1+4 x^{2}\right)^{2}}$

For $x>0, g^{\prime}(x)=0$ for $x=\frac{1}{2}$.

$$
\begin{aligned}
& g^{\prime}(x)>0 \text { for } 0<x<\frac{1}{2} \\
& g^{\prime}(x)<0 \text { for } x>\frac{1}{2} \\
& g\left(\frac{1}{2}\right)=1
\end{aligned}
$$

Therefore g has a maximum value of 1 at $x=\frac{1}{2}$, and g has no minimum value on the open interval ($0, \infty$).
(b) $\int_{1}^{\infty}(f(x)-g(x)) d x=\lim _{b \rightarrow \infty} \int_{1}^{b}(f(x)-g(x)) d x$
$=\left.\lim _{b \rightarrow \infty}\left(\ln (x)-\frac{1}{2} \ln \left(1+4 x^{2}\right)\right)\right|_{x=1} ^{x=b}$
$=\lim _{b \rightarrow \infty}\left(\ln (b)-\frac{1}{2} \ln \left(1+4 b^{2}\right)+\frac{1}{2} \ln (5)\right)$
$=\lim _{b \rightarrow \infty} \ln \left(\frac{b \sqrt{5}}{\sqrt{1+4 b^{2}}}\right)$
$=\lim _{b \rightarrow \infty} \ln \left(\frac{\sqrt{5 b^{2}}}{\sqrt{1+4 b^{2}}}\right)$
$=\frac{1}{2} \lim _{b \rightarrow \infty} \ln \left(\frac{5 b^{2}}{1+4 b^{2}}\right)$
$=\frac{1}{2} \ln \frac{5}{4}$
$5:\left\{\begin{array}{l}2: g^{\prime}(x) \\ 1: \text { critical point } \\ 1: \text { answers } \\ 1: \text { justification }\end{array}\right.$
$4:\left\{\begin{array}{l}1: \text { integral } \\ 2: \text { antidifferentiation } \\ 1: \text { answer }\end{array}\right.$

FRQ 1 Rubric

(a) $g^{\prime}(x)=\frac{4\left(1+4 x^{2}\right)-4 x(8 x)}{\left(1+4 x^{2}\right)^{2}}=\frac{4\left(1-4 x^{2}\right)}{\left(1+4 x^{2}\right)^{2}}$

For $x>0, g^{\prime}(x)=0$ for $x=\frac{1}{2}$.

$$
\begin{aligned}
& g^{\prime}(x)>0 \text { for } 0<x<\frac{1}{2} \\
& g^{\prime}(x)<0 \text { for } x>\frac{1}{2} \\
& g\left(\frac{1}{2}\right)=1
\end{aligned}
$$

Therefore g has a maximum value of 1 at $x=\frac{1}{2}$, and g has no minimum value on the open interval ($0, \infty$).
(b) $\int_{1}^{\infty}(f(x)-g(x)) d x=\lim _{b \rightarrow \infty} \int_{1}^{b}(f(x)-g(x)) d x$
$=\left.\lim _{b \rightarrow \infty}\left(\ln (x)-\frac{1}{2} \ln \left(1+4 x^{2}\right)\right)\right|_{x=1} ^{x=b}$
$=\lim _{b \rightarrow \infty}\left(\ln (b)-\frac{1}{2} \ln \left(1+4 b^{2}\right)+\frac{1}{2} \ln (5)\right)$
$=\lim _{b \rightarrow \infty} \ln \left(\frac{b \sqrt{5}}{\sqrt{1+4 b^{2}}}\right)$
$=\lim _{b \rightarrow \infty} \ln \left(\frac{\sqrt{5 b^{2}}}{\sqrt{1+4 b^{2}}}\right)$
$=\frac{1}{2} \lim _{b \rightarrow \infty} \ln \left(\frac{5 b^{2}}{1+4 b^{2}}\right)$
$=\frac{1}{2} \ln \frac{5}{4}$
$5:\left\{\begin{array}{l}2: g^{\prime}(x) \\ 1: \text { critical point } \\ 1: \text { answers } \\ 1: \text { justification }\end{array}\right.$
$4:\left\{\begin{array}{l}1: \text { integral } \\ 2: \text { antidifferentiation } \\ 1: \text { answer }\end{array}\right.$

FRQ 2 Rubric

$\ln (x)=x-2$ when $x=0.15859$ and 3.14619 .
Let $S=0.15859$ and $T=3.14619$
(a) Area of $R=\int_{S}^{T}(\ln (x)-(x-2)) d x=1.949$
(b) Volume $=\pi \int_{S}^{T}\left((\ln (x)+3)^{2}-(x-2+3)^{2}\right) d x$

$$
=34.198 \text { or } 34.199
$$

(c) Volume $=\pi \int_{S-2}^{T-2}\left((y+2)^{2}-\left(e^{y}\right)^{2}\right) d y$
$3:\left\{\begin{array}{l}1: \text { integrand } \\ 1: \text { limits } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2 \text { : integrand } \\ 1: \text { limits, constant, and answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2 \text { : integrand } \\ 1: \text { limits and constant }\end{array}\right.$

FRQ 2 Rubric

$\ln (x)=x-2$ when $x=0.15859$ and 3.14619.
Let $S=0.15859$ and $T=3.14619$
(a) Area of $R=\int_{S}^{T}(\ln (x)-(x-2)) d x=1.949$
(b) Volume $=\pi \int_{S}^{T}\left((\ln (x)+3)^{2}-(x-2+3)^{2}\right) d x$

$$
=34.198 \text { or } 34.199
$$

(c) Volume $=\pi \int_{S-2}^{T-2}\left((y+2)^{2}-\left(e^{y}\right)^{2}\right) d y$
$3:\left\{\begin{array}{l}1: \text { integrand } \\ 1: \text { limits } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2 \text { : integrand } \\ 1: \text { limits, constant, and answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { integrand } \\ 1: \text { limits and constant }\end{array}\right.$

FRQ 3 Rubric

(a) $\int_{0}^{1.5}\left(3 f^{\prime}(x)+4\right) d x=3 \int_{0}^{1.5} f^{\prime}(x) d x+\int_{0}^{1.5} 4 d x$ $=3 f(x)+\left.4 x\right|_{0} ^{1.5}=3(-1-(-7))+4(1.5)=24$
(b) $y=5(x-1)-4$
$f(1.2) \approx 5(0.2)-4=-3$
The approximation is less than $f(1.2)$ because the graph of f is concave up on the interval $1<x<1.2$.
(c) By the Mean Value Theorem there is a c with $0<c<0.5$ such that
$f^{\prime \prime}(c)=\frac{f^{\prime}(0.5)-f^{\prime}(0)}{0.5-0}=\frac{3-0}{0.5}=6=r$
(d) $\lim _{x \rightarrow 0^{-}} g^{\prime}(x)=\lim _{x \rightarrow 0^{-}}(4 x-1)=-1$
$\lim _{x \rightarrow 0^{+}} g^{\prime}(x)=\lim _{x \rightarrow 0^{+}}(4 x+1)=+1$
Thus g^{\prime} is not continuous at $x=0$, but f^{\prime} is continuous at $x=0$, so $f \neq g$.

OR
$g^{\prime \prime}(x)=4$ for all $x \neq 0$, but it was shown in part
(c) that $f^{\prime \prime}(c)=6$ for some $c \neq 0$, so $f \neq g$.
$2\left\{\begin{array}{l}1: \text { antiderivative } \\ 1: \text { answer }\end{array}\right.$
$3\left\{\begin{array}{l}1: \text { tangent line } \\ 1: \text { computes } y \text { on tangent line at } x=1.2 \\ 1: \text { answer with reason }\end{array}\right.$
$\left\{\begin{aligned} 1: & \text { reference to MVT for } f^{\prime} \text { (or differentiability } \\ & \text { of } f^{\prime} \text {) } \\ 1: & \text { value of } r \text { for interval } 0 \leq x \leq 0.5\end{aligned}\right.$
$\begin{cases}1: & \text { answers "no" with reference to } \\ & g^{\prime} \text { or } g^{\prime \prime} \\ \text { 1: } & \text { correct reason }\end{cases}$

FRQ 3 Rubric

(a) $\int_{0}^{1.5}\left(3 f^{\prime}(x)+4\right) d x=3 \int_{0}^{1.5} f^{\prime}(x) d x+\int_{0}^{1.5} 4 d x$ $=3 f(x)+\left.4 x\right|_{0} ^{1.5}=3(-1-(-7))+4(1.5)=24$
(b) $y=5(x-1)-4$
$f(1.2) \approx 5(0.2)-4=-3$
The approximation is less than $f(1.2)$ because the graph of f is concave up on the interval $1<x<1.2$.
(c) By the Mean Value Theorem there is a c with $0<c<0.5$ such that
$f^{\prime \prime}(c)=\frac{f^{\prime}(0.5)-f^{\prime}(0)}{0.5-0}=\frac{3-0}{0.5}=6=r$
(d) $\lim _{x \rightarrow 0^{-}} g^{\prime}(x)=\lim _{x \rightarrow 0^{-}}(4 x-1)=-1$
$\lim _{x \rightarrow 0^{+}} g^{\prime}(x)=\lim _{x \rightarrow 0^{+}}(4 x+1)=+1$
Thus g^{\prime} is not continuous at $x=0$, but f^{\prime} is continuous at $x=0$, so $f \neq g$.

OR
$g^{\prime \prime}(x)=4$ for all $x \neq 0$, but it was shown in part
(c) that $f^{\prime \prime}(c)=6$ for some $c \neq 0$, so $f \neq g$.
$2\left\{\begin{array}{l}1: \text { antiderivative } \\ 1: \text { answer }\end{array}\right.$
$3\left\{\begin{array}{l}1: \text { tangent line } \\ 1: \text { computes } y \text { on tangent line at } x=1.2 \\ 1: \text { answer with reason }\end{array}\right.$
$\left\{\begin{aligned} 1: & \text { reference to MVT for } f^{\prime} \text { (or differentiability } \\ & \text { of } f^{\prime} \text {) } \\ 1: & \text { value of } r \text { for interval } 0 \leq x \leq 0.5\end{aligned}\right.$
$\begin{cases}1: & \text { answers "no" with reference to } \\ & g^{\prime} \text { or } g^{\prime \prime} \\ \text { 1: } & \text { correct reason }\end{cases}$

FRQ 4 Rubric

(a) Area of $R=\int_{0}^{k} \frac{1}{x+2} d x=\ln (k+2)-\ln (2)$
(b) $V_{R}=\pi \int_{0}^{k} \frac{1}{(x+2)^{2}} d x$

$$
=-\left.\frac{\pi}{x+2}\right|_{0} ^{k}=\frac{\pi}{2}-\frac{\pi}{k+2}
$$

(c) $V_{S}=\pi \int_{k}^{\infty} \frac{1}{(x+2)^{2}} d x$

$$
=\lim _{n \rightarrow \infty}-\left.\frac{\pi}{x+2}\right|_{k} ^{n}=\frac{\pi}{k+2}
$$

$V_{S}=V_{R}$
$\frac{\pi}{k+2}=\frac{\pi}{2}-\frac{\pi}{k+2}$
$\frac{2}{k+2}=\frac{1}{2}$
$k=2$
$2:\left\{\begin{array}{c}1: \text { integral } \\ 1: \text { antidifferentiation and } \\ \text { evaluation }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { limits } \\ 1: \text { integrand } \\ 1: \text { antidifferentiation and } \\ \text { evaluation }\end{array}\right.$
$4:\left\{\begin{array}{l}1: \text { improper integral } \\ 1: \text { antidifferentiation and } \\ \quad \text { evaluation } \\ 1: \text { equation } \\ 1: \text { answer }\end{array}\right.$

FRQ 4 Rubric

(a) Area of $R=\int_{0}^{k} \frac{1}{x+2} d x=\ln (k+2)-\ln (2)$
(b) $V_{R}=\pi \int_{0}^{k} \frac{1}{(x+2)^{2}} d x$

$$
=-\left.\frac{\pi}{x+2}\right|_{0} ^{k}=\frac{\pi}{2}-\frac{\pi}{k+2}
$$

(c) $V_{S}=\pi \int_{k}^{\infty} \frac{1}{(x+2)^{2}} d x$

$$
=\lim _{n \rightarrow \infty}-\left.\frac{\pi}{x+2}\right|_{k} ^{n}=\frac{\pi}{k+2}
$$

$V_{S}=V_{R}$
$\frac{\pi}{k+2}=\frac{\pi}{2}-\frac{\pi}{k+2}$
$\frac{2}{k+2}=\frac{1}{2}$
$k=2$
$2:\left\{\begin{array}{c}1: \text { integral } \\ 1: \text { antidifferentiation and } \\ \text { evaluation }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { limits } \\ 1: \text { integrand } \\ 1: \text { antidifferentiation and } \\ \text { evaluation }\end{array}\right.$
$4:\left\{\begin{array}{l}1: \text { improper integral } \\ 1: \text { antidifferentiation and } \\ \quad \text { evaluation } \\ 1: \text { equation } \\ 1: \text { answer }\end{array}\right.$

