

Limits, Continuity, and the Definition of the Derivative Page 6 of 18

Practice Problems

Limit as x approaches infinity

1.
$$\lim_{x \to \infty} \left(\frac{3x - 7}{5x^4 - 8x + 12} \right) = \bigcirc$$

2.
$$\lim_{x \to \infty} \left(\frac{3x^4 - 2}{5x^4 - 2x + 1} \right) = \frac{3}{5}$$

3.
$$\lim_{x \to \infty} \left(\frac{x^6 - 2}{10x^4 - 9x + 8} \right) = \emptyset$$

4.
$$\lim_{x \to \infty} \left(\frac{7x^4 - 2}{5 - 2x^3 - 14x^4} \right) = \frac{-7}{14} = \frac{-1}{2}$$

$$5. \lim_{x \to \infty} \left(\frac{\sin x}{e^x} \right) = \mathbf{O}$$

6.
$$\lim_{x \to -\infty} \left(\frac{\sqrt{x^2 - 9}}{2x - 3} \right) = \frac{-1}{2}$$

$$7. \lim_{x \to \infty} \left(\frac{\sqrt{x^2 - 9}}{2x - 3} \right) = \frac{1}{2}$$

Limit as x approaches a number

8.
$$\lim_{x \to 2} (x^3 - x + 1)$$
 $2^3 - 2 + 1 = 7$

9.
$$\lim_{x \to 2} \left(\frac{x^2 - 4}{x - 2} \right) = \frac{\left(x + 2 \right) \left(x - 2 \right)}{\left(x - 2 \right)} = x + 2$$

$$2 + 2 = 4$$

10.
$$\lim_{x\to 2^-} \left(\frac{3}{x-2}\right) = -\infty$$

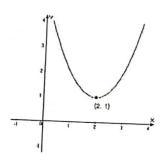
$$11. \lim_{x \to 2^+} \left(\frac{3}{x-2} \right) = \bigcirc$$

12.
$$\lim_{x \to 2} \left(\frac{3}{x-2} \right) =$$

13.
$$\lim_{x \to 2^+} \left(\frac{3}{2-x} \right) = -6$$

14.
$$\lim_{x \to \frac{\pi}{4}} \left(\frac{\sin x}{x} \right) = \frac{\sin x}{\frac{\pi}{4}} = \frac{\sqrt{2}}{\frac{\pi}{4}} = \frac{\sqrt{2}}{\frac{\pi}{4}}$$

$$\frac{\sqrt{2}}{2} \cdot \frac{\mathcal{H}}{\pi} = \frac{2\sqrt{2}}{\pi} = \frac{4}{4}$$
15.
$$\lim_{x \to \frac{\pi}{4}} \left(\frac{\tan x}{x} \right) = \frac{\tan \frac{\pi}{4}}{\frac{\pi}{4}} = \frac{1}{\frac{\pi}{4}}$$


$$= \frac{\mathcal{H}}{4}$$

Copyright © 2008 Laying the Foundation, Inc., Dallas, Texas. All rights reserved.

These materials may be used for face-to-face teaching with students only.

Limits, Continuity, and the Definition of the Derivative Page 9 of 18

$$(f(2))^{3} - 3f(2) + 7$$

$$|^{3} - 3(1) + 7 = |-3 + 7|$$

$$((f(x)^{3}) - 3f(x) + 7) = 5$$

- 4. The graph of y = f(x) is shown above. $\lim_{x \to 2} ((f(x)^3) 3f(x) + 7) =$
 - (A) 1
- (C) 7
- (D) 9
- (E) Does not exist

5. If
$$f(x) = \begin{cases} \frac{x^2 - 3x - 4}{x + 1}, & x \neq -1 \\ 2, & x = -1 \end{cases}$$
, what is $\lim_{x \to -1} f(x)$? $(x - 4)(x + 1) = x - 4 = -5$

$$\frac{(x-4)(x+1)}{(x+1)} = x-4$$

-1-4=-5

- (B) 0
- (C) 2
- (D) 3
- (E) Does not exist

6.
$$\lim_{x \to \infty} \left(\frac{2x^6 - 5x^3 + 10}{20 - 4x^2 - x^6} \right) = -2$$

- (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$
- (D) 2
- (E) Does not exist

7.
$$\lim_{x \to \infty} \left(\frac{2x^5 - 5x^3 + 10}{20 - 4x^2 - x^6} \right) =$$

- (A) -2 (B) $-\frac{1}{2}$ (C) 0 (D) $\frac{1}{2}$ (E) 2

Limits, Continuity, and the Definition of the Derivative Page 10 of 18

8.
$$\lim_{x \to \infty} \left(1 + e^{\frac{1}{2} + \frac{1}{x}} \right) = 1 + e^{\frac{1}{2} + 0}$$

- (B) 0

- (E) ∞

9.
$$\lim_{x \to 3^+} \frac{5}{3-x} =$$

- (B) -5
- (C) 0

- (E) ∞

10. If
$$\lim_{x \to \infty} \left(\frac{5n^3}{20 - 3n - kn^3} \right) = \frac{1}{2}$$
, then $k = \frac{1}{2}$

$$\frac{-5}{K} = \frac{1}{2}$$

$$\frac{-5}{K} = \frac{1}{2}$$
 $-5 = \frac{1}{2}K$
 $K = -10$

- (B) -4 (C) $\frac{1}{4}$ (D) 4
- (E) 10

11. Which of the following is/are true about the function g if $g(x) = \frac{(x-2)^2}{x^2 + x - 6}$?

- II. The graph of g has a vertical asymptote at x = -3
- JH. The graph of g has a horizontal asymptote at y = 0

- (A) I only (B) II only
- (C) III only (D) I and II only,
- (E) II and III only

Copyright © 2008 Laying the Foundation, Inc., Dallas, Texas. All rights reserved. These materials may be used for face-to-face teaching with students only.

Limits, Continuity, and the Definition of the Derivative Page 11 of 18

12.
$$f(x) = \begin{cases} \sin x, & x < \frac{\pi}{4} & \frac{\sqrt{2}}{2} \\ \cos x, & x > \frac{\pi}{4} & \frac{\sqrt{2}}{2} \\ \tan x, & x = \frac{\pi}{4} & 1 \end{cases}$$

What is $\lim_{x \to \frac{\pi}{4}} f(x)$?

$$\overbrace{(D)} \frac{\sqrt{2}}{2}$$

13.
$$\lim_{x \to a} \left(\frac{\sqrt{x} - \sqrt{a}}{x - a} \right) = \frac{\left(\sqrt{x} - \sqrt{a} \right)}{x - a} \cdot \frac{\left(\sqrt{x} + \sqrt{a} \right)}{\sqrt{x} + \sqrt{a}} = \frac{\left(x - \sqrt{a} \right)}{\sqrt{x} + \sqrt{a}} = \frac{1}{\sqrt{x} + \sqrt{a}}$$

$$(A)$$
 $\frac{1}{2\sqrt{a}}$

(B)
$$\frac{1}{\sqrt{a}}$$

(C)
$$\sqrt{a}$$

(D)
$$2\sqrt{a}$$

(A)
$$\frac{1}{2\sqrt{a}}$$
 (B) $\frac{1}{\sqrt{a}}$ (C) \sqrt{a} (D) $2\sqrt{a}$ (E) Does not exist $\sqrt{a} + \sqrt{a}$

14.
$$\lim_{x \to 0^+} \frac{\ln 2x}{2x} = \frac{-\infty}{\text{Small}}$$

$$\frac{x^2+3x}{3x+2}$$

Free Response 2 (No calculator)

Given the function
$$f(x) = \frac{x^3 + 2x^2 - 3x}{3x^2 + 3x - 6}$$
.
$$\frac{X(X^2 + 2X - 3)}{3(X^2 + X - \lambda)} = \frac{X(X + 3)(X - 1)}{3(X + 2)(X - 1)}$$

(a) What are the zeros of f(x)? X = 0, X = -3

(a) What are the zeros of
$$f(x)$$
? $x = 0$, $x = -3$
(b) What are the vertical asymptotes of $f(x)$? $x = -2$
(c) The end behavior model of $f(x)$ is the function $g(x)$. What is $g(x)$? $-x = -2$
(d) What is $\lim_{x \to \infty} f(x)$? What is $\lim_{x \to \infty} \frac{f(x)}{g(x)}$? $y = -3$

$$y = \frac{1}{3}x$$

Answers to Unit 1 – Limit and Continuity Review

Practice Problems:

- 1. 0

- 2. $\frac{3}{5}$ 3. ∞ 4. $-\frac{1}{2}$
- 5. 0
- 6. $-\frac{1}{2}$ 7. $\frac{1}{2}$ 8. 7

- 9. 4
- 10. ∞
- 11. ∞
- 12. does not exist
- 13. -∞
- 15. $\frac{4}{\pi}$

- 7, C

- 10. A
- 11. В
- 12. D
- 13. Α
- 14. Α

Limits, Continuity, and the Definition of the Derivative Page 18 of 18

Free Response 2 (No calculator)

Given the function $f(x) = \frac{x^3 + 2x^2 - 3x}{3x^2 + 3x - 6}$.

- (a) What are the zeros of f(x)?
- (b) What are the vertical asymptotes of f(x)?
- (c) The end behavior model of f(x) is the function g(x). What is g(x)?
- (d) What is $\lim_{x \to \infty} f(x)$? What is $\lim_{x \to \infty} \frac{f(x)}{g(x)}$?
- (a) The zeros of the function, f(x), occur at x = -3, 0, 1
- 3 pts, 1 for each zero
- (b) There is a vertical asymptote at x = -2
- at x = -2c) $g(x) = \frac{1}{-}x$

1 pt for the vertical asymptote

(c) $g(x) = \frac{1}{3}x$

2 pts for g(x)

(d) $\lim_{x \to \infty} f(x) = \infty$ $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$ 1 pt $\lim_{x \to \infty} f(x)$ 2 pts for $\lim_{x \to \infty} \frac{f(x)}{g(x)}$

- $\lim_{X\to\infty} \frac{x^2+3x}{3x+2} \cdot \frac{3}{x} = 1$
- the contr

but the !.

- ---
- garan y garan y garan
- Copyright © 2008 Laying the Foundation, Inc., Dallas, Texas. All rights reserved.

 These materials may be used for face-to-face teaching with students only.