

10. Consider
$$f(x) = \begin{cases} x^2 + 2 & \text{for } x < 0 \\ 1 & \text{for } x = 0 \\ x^2 - 2 & \text{for } x > 0 \end{cases}$$

a)
$$\lim_{x \to 0} f(x) = -\frac{2}{-2}$$

b)
$$\lim_{x \to 0} f(x) = -\frac{2}{-2}$$

c)
$$\lim_{x \to 0} f(x) = -\frac{2}{-2}$$

d) Where is $f(x)$ discontinuous $x = a$, does
if is necessarily mean that lim does not exist?
NO the limit t Cluid
eXist but if

$$\lim_{x \to 0} \frac{7(x^2 + a^2 - 1x^2)}{h} = \frac{-2x}{(x^2 + a^2 - 1)^2}$$

10.
$$\lim_{x \to 0} \frac{7(x^2 + a^2 - 1x^2)}{h} = \frac{-2x}{(x^2 + a^2 - 1)^2}$$

11.
$$\lim_{x \to 0} \frac{7(x^2 + a^2 - 1x^2)}{h} = \frac{-2x}{(x^2 + a^2 - 1)^2}$$

12.
$$\lim_{x \to 0} \frac{7(x^2 + a^2 - 1x^2)}{h} = \frac{-2x}{(x^2 + a^2 - 1)^2}$$

13.
$$\lim_{x \to 0} \frac{x^2 - (x^2 + h)^2}{h} = \frac{-2x}{(x^2 + a^2 - 1)^2}$$

14.
$$\lim_{x \to 0} \frac{(2x - 1)(4x^2 + 2x + 1)}{(x^2 + 1)^2 x^2 + 1} = \frac{-2x}{(x^2 + 2x^2 + 1)^2}$$

14.
$$\lim_{x \to 0} \frac{(2x - 1)(4x^2 + 2x + 1)}{(x^2 - 1)(2x^2 - 1)} = \frac{-2x}{(x^2 + 2x^2 + 1)^2}$$

15. Find A so that
$$\lim_{x \to 0} \frac{(2x - 1)(4x^2 + 2x + 1)}{h} = \frac{3}{2}, \frac{2}{2}$$

16. If
$$\lim_{x \to 0} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + a^2}}{(x^2 + 3x^2 - 10)} = \frac{-2x}{(x^2 + 3x^2 - 1)^2}$$

16. If
$$\lim_{x \to 0} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + a^2}}{(x^2 + 3x^2 - 10)} = \frac{-2x}{(x^2 + 3x^2 - 1)^2}$$

16. If
$$\lim_{x \to 0} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + a^2}}{(x^2 + 3x^2 - 1)^2} = \frac{-2x}{(x^2 + 3x^2 - 1)^2} = \frac{-2x}{(x^2 + 3x^2 - 1)^2}$$

16. If
$$\lim_{x \to 0} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + a^2}}{(x^2 + 3x^2 - 1)^2} = \frac{-2x}{(x^2 - 1)^2} = \frac{-2x}{(x^2$$

Problem-Attic format version 4.4.367

© 2011-2018 EducAide Software Licensed for use by Melissa Bolden Terms of Use at www.problem-attic.com

Unit 1 Quiz 2 Review 9/5/2019

1. Answer: Points: 2. Answer:	1 1 2	15. Answer: Points: 16. Answer:	3 1 A = 12, B = 4
Points: 3.	1	Points:	1 1
Answer: Points:	9 5 1		
4. Answer: Points:	-1 1		
5. Answer: Points:	2 1		
6. Answer: Points:	0 1		
7. Answer: Points:	I and II only 1		
8. Answer: Points:	3 1		
9. Answer: Points:	±2 1		
10. Answer: Points:	-2, 2, 2, at 0, no		
11. Answer: Points:	14 <i>x</i> 1		
12. Answer: Points:	$\frac{1}{2\sqrt{x}}$		
13. Answer: Points:	$\frac{2}{1}x^{3}$		
14. Answer: Points:	2 1		