AP CALCULUS AB

Problem Set Unit 1 Name:

- 1. If $f(x) = e^x$, which of the following lines is an asymptote to the graph of f?
 - (A) y=0 (B) x=0 (C) y=x (D) y=-x (E) y=1
- 2. Which of the following equations has a graph that is symmetric with respect to the origin?
 - (A) $y = \frac{x+1}{x}$ (B) $y = -x^5 + 3x$ (C) $y = x^4 2x^2 + 6$ (D) $y = (x-1)^3 + 1$ (E) $y = (x^2 + 1)^2 - 1$
- 3. Let $f(x) = \cos(\arctan x)$. What is the range of f?
 - (A) $\left\{ x \middle| -\frac{\pi}{2} < x < \frac{\pi}{2} \right\}$ (B) $\left\{ x \middle| 0 < x \le 1 \right\}$ (C) $\left\{ x \middle| 0 \le x \le 1 \right\}$ (D) $\left\{ x \middle| -1 < x < 1 \right\}$ (E) $\left\{ x \middle| -1 \le x \le 1 \right\}$

4. $\lim_{n \to \infty} \frac{4n^2}{n^2 + 10,000n}$ is

(A) 0 (B) $\frac{1}{2,500}$ (C) 1 (D) 4 (E) nonexistent

- 5. The graph of $y^2 = x^2 + 9$ is symmetric to which of the following?
 - I. The x-axis
 - II. The y-axis
 - III. The origin

(A) I only (B) II only (C) III only (D) I and II only (E) I, II, and III

6. Which of the following functions are continuous for all real numbers x?

I. $y = x^{\frac{2}{3}}$ II. $y = e^x$ III. $y = \tan x$ (A) None (B) I only (C) II only (D) I and II (E) I and III

The figure above shows the graph of a sine function for one complete period. Which of the following is an equation for the graph?

(A) $y = 2\sin\left(\frac{\pi}{2}x\right)$ (B) $y = \sin(\pi x)$ (C) $y = 2\sin(2x)$ (D) $y = 2\sin(\pi x)$ (E) $y = \sin(2x)$

8. If
$$f(x) = 2x^2 + 1$$
, then $\lim_{x \to 0} \frac{f(x) - f(0)}{x^2}$ is
(A) 0 (B) 1 (C) 2 (D) 4 (E) nonexistent

9. If
$$\ln x - \ln \left(\frac{1}{x}\right) = 2$$
, then $x =$
(A) $\frac{1}{e^2}$ (B) $\frac{1}{e}$ (C) e (D) $2e$ (E) e^2

10. If
$$f(x) = x^3 + 3x^2 + 4x + 5$$
 and $g(x) = 5$, then $g(f(x)) =$
(A) $5x^2 + 15x + 25$ (B) $5x^3 + 15x^2 + 20x + 25$ (C) 1125
(D) 225 (E) 5

Let f and g be odd functions. If p, r, and s are nonzero functions defined as follows, which must be odd? 11.

I.	p(x) = f(g(x))				
II.	r(x) = f(x) + g(x)				
III.	s(x) = f(x)g(x)				
(A)	I only	(B)	II only	(C)	I and II only
(D)	II and III only	(E)	I, II, and III		

The graph of the function f is shown in the figure above. Which of the following statements about f is true?

- (A) $\lim_{x \to a} f(x) = \lim_{x \to b} f(x)$
- (B) $\lim_{x \to a} f(x) = 2$
- (C) $\lim_{x \to b} f(x) = 2$
- (D) $\lim_{x \to b} f(x) = 1$
- (E) $\lim_{x \to a} f(x)$ does not exist.

13. If
$$f(x) = \begin{cases} \ln x & \text{for } 0 < x \le 2\\ x^2 \ln 2 & \text{for } 2 < x \le 4, \end{cases}$$
 then $\lim_{x \to 2} f(x)$ is
(A) $\ln 2$ (B) $\ln 8$ (C) $\ln 16$ (D) 4 (E) nonexistent

14. If
$$a \neq 0$$
, then $\lim_{x \to a} \frac{x^2 - a^2}{x^4 - a^4}$ is
(A) $\frac{1}{a^2}$ (B) $\frac{1}{2a^2}$ (C) $\frac{1}{6a^2}$ (D) 0 (E) nonexistent

12.

Let *f* be the function that is given by $f(x) = \frac{ax+b}{x^2-c}$ and that has the following properties.

- i) The graph of *f* is symmetric with respect to the y-axis
- ii) $\lim_{x \to 2^+} f(x) = +\infty$
- iii) f(1) = -3
- a) Determine the values of a, b, and c.
- b) Write an equation for each vertical and each horizontal asymptote of the graph of *f*. Justify your answer.
- c) Sketch the graph of *f* in the xy-plane provided below.

Answers:

1. A	2. B		3. B	4. D	5. E	6. D	7. D
	8. C	9. C	10. E	11. C	12. B	13. E	14. B

a) Graph symmetric to y-axis
$$\Rightarrow$$
 f is even
 $f(-x) = f(x)$ therefore $a = 0$
 $\lim_{x \to 2^+} f(x) = +\infty$ therefore $c = 4$
 $f(x) = \frac{b}{x^2 - 4}$
 $f(1) = -3$, therefore b=9
b) $f(x) = \frac{9}{x^2 - 4}$
Vertical: $x = 2, x = -2$
Horizontal: $y = 0$

Justify: the function is undefined at $x = \pm 2$. The limit as x approaches 2 from the right is infinity and the left is negative infinity. The limit as x approaches -2 from the left is infinity and from the right is negative infinity. This means vertical asymptotes occur here. The limit as x approaches positive and negative infinity is 0, therefore, the horizontal asymptote occurs at y=0.

c)

