4. (1998 BC 26) The population P(t) of a species satisfies the logistic differential equation

$$\frac{dP}{dt} = P\left(2 - \frac{P}{5000}\right), \text{ where the initial population } P(0) = 3,000 \text{ and } t \text{ is the time in years. What is}$$

$$\lim_{t \to \infty} P(t)?$$

A. 2,500

B. 3,000

C. 4,200

D. 5,000

(E.)10,000

5. Find the carrying capacity for a population growth rate modeled by $\frac{dP}{dt} = 6P - 0.012P^2$. $\frac{dP}{dt} = 6P - \frac{12P^2}{1000} = 6P - \frac{6P^2}{500}$

b. 50

c. 0.012

d. 0.002

e. None of these

A population of rabbits in a certain habitat grows according to the differential equation $\frac{dy}{dt} = y\left(1 - \frac{1}{10}y\right)$, where t is measured in months ($t \ge 0$) and y is measured in hundreds of rabbits per months. There were initially 100 rabbits in this habitat that is y(0) = 1

at half of carrying capacity

10. What is the fastest growth rate, in rabbits per month that this population exhibits?

$$\frac{dy}{dt} = 5\left(1 - \frac{5}{10}\right) = 5\left(\frac{5}{10}\right) = \frac{25}{10} = 2.5 \times 100 = 250$$

(11.) Estimates of y(t) can be produced using Euler's Method with step size $\Delta t = 1$. To the nearest rabbit, the estimate for y(2) is

281

Water flows continuously from a large tank at a rate proportional to the amount of water remaining in the tank; that is $\frac{dy}{dt} = ky$. There was initially 10,000 cubic feet of water in the tank, and at the time

t = 4 hours, 8000 cubic feet remained. You may use a calculator on these two problems. + = 0, y = 10,000

1 . 9 1. 9 1.539 y=1(.9)+1

+=4, y=800013. What is the value of k in the equation $\frac{dy}{dt}=ky$?