1.
$$\int_0^8 \frac{dx}{\sqrt{1+x}} =$$

(A) 1

(B) $\frac{3}{2}$

(C) 2

(D) 4

(E) 6

If the function f is defined by $f(x) = x^5 - 1$, then f^{-1} , the inverse function of f, is defined by $f^{-1}(x) =$

(A) $\frac{1}{\sqrt[5]{x+1}}$

(B) $\frac{1}{\sqrt[5]{y+1}}$

(C) ⁵√x-1

(D) $\sqrt[5]{x} - 1$

(E) $\sqrt[5]{x+1}$

The area of the region bounded by the curve $y = e^{2x}$, the x-axis, the y-axis, and the line x = 2 is equal to

(A) $\frac{e^4}{2} - e$

(B) $\frac{e^4}{2}$ -1

(C) $\frac{e^4}{2} - \frac{1}{2}$

(D) 2e4-e

(E) $2e^4 - 2$

 $\int_{\pi/4}^{\pi/2} \frac{\cos x}{\sin x} dx =$

(A) $\ln \sqrt{2}$ (B) $\ln \frac{\pi}{4}$ (C) $\ln \sqrt{3}$ (D) $\ln \frac{\sqrt{3}}{2}$

What is the average (mean) value of $3t^3 - t^2$ over the interval $-1 \le t \le 2$?

(B) $\frac{7}{2}$ (C) 8

(D) $\frac{33}{1}$

 At t = 0 a particle starts at rest and moves along a line in such a way that at time t its acceleration is $24t^2$ feet per second per second. Through how many feet does the particle move during the first 2 seconds?

(A) 32

(B) 48

(D) 96

(E) 192

7. A particle moves in a straight line with velocity $v(t) = t^2$. How far does the particle move between times t=1 and t=2?

(A) $\frac{1}{2}$ (B) $\frac{7}{2}$ (C) 3

(D) 7

(E) 8

8. $\int_{0}^{1} (x+1)e^{x^{2}+2x} dx =$

(A) $\frac{e^3}{2}$ (B) $\frac{e^3-1}{2}$ (C) $\frac{e^4-e}{2}$ (D) e^3-1 (E) e^4-e

9. $\int_0^{1/2} \frac{2x}{\sqrt{1-x^2}} dx =$

(A) $1 - \frac{\sqrt{3}}{2}$ (B) $\frac{1}{2} \ln \frac{3}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{6} - 1$ (E) $2 - \sqrt{3}$

$$10. \quad \int_{1}^{2} \frac{x-4}{x^2} dx =$$

(A)
$$-\frac{1}{2}$$

(A) $-\frac{1}{2}$ (B) $\ln 2 - 2$ (C) $\ln 2$ (D) 2

(E) $\ln 2 + 2$

11.
$$\int \frac{5}{1+x^2} dx =$$

(A)
$$\frac{-10x}{(1+x^2)^2} + C$$

(B) $\frac{5}{2x} \ln(1+x^2) + C$ (C) $5x - \frac{5}{x} + C$

(E)
$$5\ln(1+x^2)+C$$

12. If
$$\frac{dy}{dx} = \cos(2x)$$
, then $y =$

$$(A) \quad -\frac{1}{2}\cos(2x) + C$$

(A)
$$-\frac{1}{2}\cos(2x)+C$$
 (B) $-\frac{1}{2}\cos^2(2x)+C$ (C) $\frac{1}{2}\sin(2x)+C$

(C)
$$\frac{1}{2}\sin(2x) + C$$

(D)
$$\frac{1}{2}\sin^2(2x) + C$$

(D)
$$\frac{1}{2}\sin^2(2x) + C$$
 (E) $-\frac{1}{2}\sin(2x) + C$

(B)
$$\frac{\ln 8}{\ln 2}$$

(A)
$$\ln 3 + \ln 1$$
 (B) $\frac{\ln 8}{\ln 2}$ (C) $\int_{1}^{4} e^{t} dt$ (D) $\int_{1}^{4} \ln x dx$ (E) $\int_{1}^{4} \frac{1}{t} dt$

(D)
$$\int_{1}^{4} \ln x \, dt$$

(E)
$$\int_{1}^{4} \frac{1}{t} dt$$

14. If
$$y = 10^{(x^2-1)}$$
, then $\frac{dy}{dx} =$

(A)
$$(\ln 10)10^{(x^2-1)}$$

(B)
$$(2x)10^{(x^2-1)}$$

(B)
$$(2x)10^{(x^2-1)}$$
 (C) $(x^2-1)10^{(x^2-2)}$

(D)
$$2x(\ln 10)10^{(x^2-1)}$$

(E)
$$x^2 (\ln 10) 10^{(x^2-1)}$$

15. If
$$y = \arctan(\cos x)$$
, then $\frac{dy}{dx} =$

(A)
$$\frac{-\sin x}{1+\cos^2 x}$$

(B)
$$-(\operatorname{arcsec}(\cos x))^2 \sin x$$
 (C) $(\operatorname{arcsec}(\cos x))^2$

(C)
$$(\operatorname{arcsec}(\cos x))^2$$

(D)
$$\frac{1}{(\arccos x)^2 + 1}$$

(E)
$$\frac{1}{1+\cos^2 x}$$

16.

The graph of f is shown in the figure above. If $\int_{1}^{3} f(x) dx = 2.3$ and F'(x) = f(x), then F(3) - F(0) =

- (A) 0.3
- (B) 1.3
- (C) 3.3
- (D) 4.3
- (E) 5.3

1.	2.	3.	4.	5.	6.	7.	8.
9.	10.	11.	12.	13.	14.	15.	16.

t (minutes)	0	2	5	9	10
H(t) (degrees Celsius)	66	60	52	44	43

As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for $0 \le t \le 10$, where time t is measured in minutes and temperature H(t) is measured in degrees Celsius. Values of H(t) at selected values of time t are shown in the table above.

(a) Use the data in the table to approximate the rate at which the temperature of the tea is changing at time t = 3.5. Show the computations that lead to your answer.

- (b) Using correct units, explain the meaning of $\frac{1}{10} \int_0^{10} H(t) dt$ in the context of this problem. Use a trapezoidal sum with the four subintervals indicated by the table to estimate $\frac{1}{10} \int_0^{10} H(t) dt$.
- (c) Evaluate $\int_0^{10} H'(t) dt$. Using correct units, explain the meaning of the expression in the context of this problem.

(d) At time t = 0, biscuits with temperature 100°C were removed from an oven. The temperature of the biscuits at time t is modeled by a differentiable function B for which it is known that $B'(t) = -13.84e^{-0.173t}$. Using the given models, at time t = 10, how much cooler are the biscuits than the tea?

ANSWERS: 1969 #4,14,23,29,33,35, 1973#8,21,27,30,32, 1985#4,7,10,20, 1997#78, FR from 2011 AB.

1. D	2. E	3. C	4. A	5. A	6. A	7. B	8. B
9. E	10. B	11. D	12. C	13. E	14. D	15. A	16. D

t (minutes)	0	2	5	9	10
H(t) (degrees Celsius)	66	60	52	44	43

As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for $0 \le t \le 10$, where time t is measured in minutes and temperature H(t) is measured in degrees Celsius. Values of H(t) at selected values of time t are shown in the table above.

(a)
$$H'(3.5) \approx \frac{H(5) - H(2)}{5 - 2}$$

= $\frac{52 - 60}{3} = -2.666$ or -2.667 degrees Celsius per minute

1 : answer

(b)
$$\frac{1}{10}\int_0^{10}H(t)\,dt$$
 is the average temperature of the tea, in degrees Celsius, over the 10 minutes.

$$3: \begin{cases} 1: \text{ trap ezoidal sum} \\ 1: \text{ estimate} \end{cases}$$

$$\frac{1}{10} \int_0^{10} H(t) dt \approx \frac{1}{10} \left(2 \cdot \frac{66 + 60}{2} + 3 \cdot \frac{60 + 52}{2} + 4 \cdot \frac{52 + 44}{2} + 1 \cdot \frac{44 + 43}{2} \right)$$
= 52.95

(c)
$$\int_0^{10} H'(t) dt = H(10) - H(0) = 43 - 66 = -23$$

The temperature of the teadrops 23 degrees Celsius from time $t = 0$ to time $t = 10$ minutes.

1 : meaning of expression

(d)
$$B(10) = 100 + \int_0^{10} B'(t) dt = 34.18275$$
; $H(10) - B(10) = 8.817$
The biscuits are 8.817 degrees Celsius cooler than the tea

$$3: \begin{cases} 1: \text{ integrand} \\ 1: \text{ uses } B(0) = 100 \\ 1: \text{ an } s\text{wer} \end{cases}$$