Problem Set #2 - Derivatives Show all work on a separate sheet of paper Show all work on a separate sheet of paper Problem Set #2 - Derivatives Date: Name: Date:  $\begin{cases} 2kx^2 - x, & x > 3 \\ x^3 + cx, & x \le 3 \end{cases}$  is everywhere differentiable? D e. 24 The graphs of f(x) and g(x) are shown below. If  $h(x) = \frac{g(2x)}{f(x)}$ , use the graphs to find h'(1). b) -9/16 (c) 7/16 Let f and g be differentiable functions with the following properties: (i) g(x) > 0 for all x (ii) f(0) = 1(D) The limit does not exist. (C) 1 E If h(x) = f(x)g(x) and h'(x) = f(x)g'(x), then f(x) =(E) It cannot be determined from the information given. (B) g(x) The slope of the line tangent to the graph of  $y = \ln(x^2)$  at  $x = e^2$  is If  $f(x) = \frac{x-1}{x+1}$  for all  $x \neq -1$ , then f'(1) =D (B)  $-\frac{1}{2}$  (C) 0 (E) 1



Problem Set #2 - Derivatives Show all work on a separate sheet of paper Date: The slope of the line <u>normal</u> to the graph of  $y = 2\ln(\sec x)$  at  $x = \frac{\pi}{\lambda}$  is (B)  $-\frac{1}{2}$ (C) (D) (E) nonexistent Free Response - No Calculators Please 1. The position function of a particle is given by  $x(t) = t^3 - 2t^2 - 4t + 6$  for  $t \ge 0$ . a) Find the velocity function b) Find the acceleration function c) For what value(s) of 0, 0 st 4, is the particle's instantaneous velocity the same as its average velocity on the closed interval [0, 4]? Show all work that leads to your conclusion. d) Find the total distance traveled by the particle from t = 0 until t = 4. Show all work that leads to your conclusion. 2. Let  $f(x) = \sqrt{1-\sin x}$ . a) What is the domain of f?b) Find f'(x) c) What is the domain of f? d) Write an equation for the line tangent to the graph of f at x = 0

Unit 2 - Derivatives Review

- 1. What is  $\lim_{h\to 0} \frac{\cos(\frac{\pi}{3} + h) \cos(\frac{\pi}{3})}{h}$ ?
  - a) 0 b)  $-\frac{1}{2}$  c)  $\frac{1}{2}$  d)  $\frac{\sqrt{3}}{2}$  e)  $-\frac{\sqrt{3}}{2}$
- 2.  $\lim_{h\to 0} \frac{e^{x+h} e^x}{h}$  is a) 1 b) 0 c) e (d) e
- The functions f and g are differentiable and have the values shown in the table.

If 
$$A = \left(\frac{f}{g}\right)$$
 then  $A'(2) =$ 

| a) $\frac{23}{25}$ | $\frac{23}{}$ | x | f  | f' | g  | g'  |
|--------------------|---------------|---|----|----|----|-----|
| 25                 | 4             | 0 | 5  | 1  | -7 | 1/4 |
| c) $\frac{23}{1}$  | d) -7         | 2 | 8  | 3  | -5 | 1   |
| 4                  | -, .          | 4 | 14 | 9  | -3 | 4   |
| € -23              |               | 6 | 26 | 27 | -1 | 16  |

 The functions f and g are differentiable and have the values shown in the table.

If 
$$A = \sqrt{g(x)}$$
 then  $A'(-2) =$ 

| a) $\frac{9}{8}$ | x  | f  | f' | g  | g' |
|------------------|----|----|----|----|----|
| -/ 8             | -8 | 4  | 3  | -2 | 6  |
| b) impossible    | -6 | 10 | 12 | 0  | 9  |
| <b>3</b>         | -2 | 16 | 9  | 36 | 18 |
| (c)              | 2  | 30 | 15 | 52 | 24 |

- 5. If f(4) = 7 and f'(4) = 5, then f(4.097) is approximately \_\_\_\_\_\_.
  - a) 7.902 b) 7.749 c) 7.485 d) 6.932 e) 6.851
  - 6. The position of an object is given by  $s=t^2-3t+8$ . What is its average velocity for  $3 \le t \le 5$ ?

| a) 4  | b) | 3.333 | <b>(3)</b> 5 |
|-------|----|-------|--------------|
| d) -5 | e) | 0.2   |              |

7. Given the position function  $s = t^3 - 2t + 5$ , what is the instantaneous rate of change at t = 3?

a) 
$$3t^2-2$$
 b)  $3t^2$  c) 27  
d) 25 e) 30

8. If  $f(x) = \sin(2x)\cos x$ , then  $f'(\frac{\pi}{3}) =$ 

a) 
$$\sqrt{3} + 1$$
 b)  $\frac{5}{4}$  c)  $\frac{\pi^2}{3} - 1$  d)  $-\frac{5}{4}$  e)  $\frac{\pi}{3}$ 

9. Differentiate:  $\frac{1+\sin x}{1-\sin x}$ 

a) -1 b) 
$$-2 \sec x$$
 c)  $2 \sec x$   
d)  $\frac{-2}{(1-\sin x)^2}$  e)  $\frac{2\cos x}{(1-\sin x)^2}$ 

10. If 
$$y = \ln \sqrt{\frac{1-x}{1+x}}$$
, then  $\frac{dy}{dx} =$ 

a) 
$$\frac{1}{1-x^2}$$
 b)  $\frac{1}{1+x^2}$  c)  $\frac{-1}{1+x^2}$  d)  $\frac{-1}{1-x^2}$  e) 0

11. Assume f(7) = 0, f'(7) = 14, g(7) = 1, and  $g'(7) = \frac{1}{2}$ . Find h'(7) given  $h(x) = \frac{f(x)}{g(x)}$ .

a) 
$$-14$$
 b)  $-2$  c)  $14$  d)  $\frac{49}{2}$  e) 98

- 12. Find the derivative of  $9x^2f(x)$ .
- b) 9x[xf(x) + 2f'(x)]
- c) 18xf'(x)
- d 9x[xf'(x) + 2f(x)]
- e)  $3x^3 + [f'(x)]^2$
- 13. Find an equation for the tangent line to the graph of  $f(x) = \sqrt{x-7}$  at the point where x = 16.

(a) 
$$x - 6y = -2$$

- c) x + 6y = 2

- 14. The graph of  $f(x) = \frac{-5x^2}{7+x^2}$  has a horizontal

a) -5 b) 5 c) 
$$\sqrt{7}$$
 d)  $-\sqrt{7}$   $\bigcirc$  0

15. If  $f(x) = x^2 e^x$  find a point where the tangent is

b)  $(0, e^2)$  (c)  $(-2, \frac{4}{e^2})$ 

- e)  $(-2, 4e^2)$ d) (0,-2)
- 16. If  $f(x) = (x-5)^{2/3} + 1$ , then the x-value of a vertical tangent is

17. Given a function is defined by 
$$f(x)=\sqrt{x+4}$$
, for what value(s) of  $x$  does the function have one or more vertical tangents?

a) 0 only b) 4 only (c)-4 only d) 0 and 4 e) 0 and -4

18. The points on the graph  $y-3=\sqrt{16-9x^2}$  where vertical tangents exist are

- a) (0,7) and (0,-7)
- (b)  $\left(-\frac{4}{3},3\right)$  and  $\left(\frac{4}{3},3\right)$
- c)  $\left(-\frac{3}{4}, \frac{1}{3}\right)$  and  $\left(\frac{3}{4}, \frac{1}{3}\right)$
- d)  $(\frac{16}{3}, 3)$  and  $(-\frac{16}{9}, 3)$
- e)  $\left(-\frac{4}{3}, -3\right)$  and  $\left(\frac{4}{3}, -3\right)$

19. If  $y = 8 \sin 2x \cos 2x$ , then  $\frac{d^2y}{dx^2} =$ 

- (a)  $-128 \sin 2x \cos 2x$

- d)  $32 \sin 2x \cos 2x$
- e)  $8 \sin 2x \cos 4x$

- (a)  $\frac{1}{3}(x^2+x)^{-2/3}(2x+1)$
- b)  $\frac{2}{3}(x^2+x)^{-2/3}(2x-1)$
- c)  $\frac{3}{2}(x^2+x)^{2/3}(2x+1)$
- d)  $\frac{x}{3}(x+1)^{-2/3}(2x+1)$
- e)  $\frac{1}{3}(x^2+x)^{2/3}(2x+1)$

21. Find  $\frac{dy}{dx}$  for  $y = x^3\sqrt{2x+1}$ 

- (a)  $\frac{x^2(7x+3)}{\sqrt{2x+1}}$  (b)  $\frac{3x^2}{2\sqrt{2x+1}}$  (c)  $\frac{8x^3+3x^2}{2\sqrt{2x^4+x^3}}$ d)  $\frac{8x+3}{\sqrt{2x+1}}$  e)  $\frac{6x^3+3}{\sqrt{2x+1}}$
- 22. Find the derivative:  $s(t) = \sec \sqrt{t}$

c)  $\sec \frac{1}{2\sqrt{t}} \cdot \tan \frac{1}{2\sqrt{t}}$  d)  $\sec \sqrt{t} \cdot \tan \sqrt{t}$ 



(b))a and b c) 4 only a) 2 and 4

The graph shows the velocity of an object that is moving along a straight line for t on [0,6].



a) at t=0

C) at t = a and t = b d) at t = 2