Page 2 of 10

. . .

1. Shown below is a slope field for which of the following differential equations?

(A)
$$\frac{dy}{dx} = y - x$$

(B)
$$\frac{dy}{dx} = x - y$$

(C)
$$\frac{dy}{dx} = \frac{x}{y}$$

(D)
$$\frac{dy}{dx} = \frac{y}{x}$$

(E)
$$\frac{dy}{dx} = -\frac{x}{y}$$

Page 3 of 10

2. Which of the following differential equations could have been used to create the slope field below?

- (A) $\frac{dy}{dx} = xy$
- (B) $\frac{dy}{dx} = -xy$
- (C) $\frac{dy}{dx} = -\frac{y}{x}$
- (D) $\frac{dy}{dx} = -\frac{x}{y}$
- (E) $\frac{dy}{dx} = y x$

Page 4 of 10

3. Which of the following could be a solution to the slope field below?

- (A) $y = \sin x$
- (B) $y = \cos x$
- (C) $y = \frac{1}{x}$
- (D) $y = -\frac{1}{x}$
- (E) $y = \ln |x|$

Page 5 of 10

- 4. A slope field for the differential equation $\frac{dy}{dx} = 5 y$ will show
 - (A) A vertical asymptote at x = 5.
 - (B) A family of parabolas opening upward.
 - (C) A horizontal asymptote at y = 5.
 - (D) A family of parabolas opening downward.
 - (E) A line with slope -1 and y-intercept 5.
- 5. Which of the following could be a solution(s) to the differential equation $\frac{dy}{dt} = 0.2y$?

I.
$$y = e^{0.2t} + 3$$

II.
$$y = 5e^{0.2t}$$

III.
$$y = 7e^{0.2t}$$

- (A) I only (B) II only (C) III only (D) II and III only (E) I, II, and III
- 6. Which of the following could be a solution(s) to the differential equation $\frac{dy}{dx} = 3x^2$?

I.
$$y = x^3 + 4$$

II.
$$y = 4x^3$$

III.
$$y = 2x^3 + 1$$

(A) I only (B) II only (C) III only (D) II and III only (E) I, II, and III

miv (I)

Page 6 of 10

7. If the slope fields of $\frac{dy}{dx} = \frac{1}{x}$ and $\frac{dy}{dx} = g(x)$ are perpendicular, then g(x) could be which of the following?

- (A) $g(x) = -\frac{1}{x}$
- (B) $g(x) = \frac{1}{x}$
- (C) g(x) = x
- (D) g(x) = -x
- (E) $g(x) = -\frac{1}{x^2}$
- 8. Which of the following differential equations would produce a slope field perpendicular to every line in the slope field created by $\frac{dy}{dx} = \sin x$?
- (A) $\frac{dy}{dx} = -\csc x$
- (B) $\frac{dy}{dx} = \csc x$
- (C) $\frac{dy}{dx} = -\sec x$
- (D) $\frac{dy}{dx} = \cos x$
- (E) $\frac{dy}{dx} = -\cos x$

Page 7 of 10

- 9. Which of the following is a solution to the differential equation $\frac{dy}{dx} = \frac{y-3}{x}$ ($x \ne 0$) with y(1) = 1 and x > 0?
- (A) y = 3 2x
- (B) y = 3 + 2x
- (C) $y = 3 + 2e^{x-1}$
- (D) $y = 3 2e^{x-1}$
- (E) $y = 3 + 2e^x$
- 10. Which of the following is a solution to the differential equation $\frac{dy}{dx} = x^2 \cos^2 y$ with $y(0) = \frac{\pi}{4}$?

QLOUD TO

- (A) $y = \frac{x^3}{3} + 1$
- (B) $y = \frac{x^3}{3} 1$
- (C) $y = \arctan\left(\frac{x^3}{3} + 1\right)$
- (D) $y = \arctan\left(\frac{x^3}{3} 1\right)$
- (E) $y = \tan\left(\frac{x^3}{3} 1\right)$

Page 8 of 10

Free Response 1:

Consider the differential equation $\frac{dy}{dx} = \frac{3x}{y}$ and $y \neq 0$.

(a) On the axes provided, sketch a slope field for the differential equation given at the nine points indicated.

- (b) Find $\frac{d^2y}{dx^2}$ in terms of x and y.
- (c) What is the particular solution y = h(x) to the differential equation with the initial condition h(0) = -1.

(d) Is the point h(0) = -1 a relative minimum, relative maximum, or neither? Justify your answer.

777

Page 9 of 10

mality of

QUAL TO

USSUS TO

Free Response 2.

Consider the differential equation $\frac{dy}{dx} = x + 2y - 1$.

(a) Sketch a slope field for the given differential equation on the axes provided at the nine points indicated.

- (b) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Describe the region in the xy plane in which the solution curves are concave down.
- (c) One particular solution to the differential equation passes through the point (1, 0). Is this point a relative minimum, relative maximum, or neither. Justify your answer.

Page 10 of 10

Free Response 3.

Consider the differential equation $\frac{dy}{dx} = y \cos(\pi x)$.

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points provided.

(b) Find the particular solution y = g(x) to the differential equation with initial condition y(1) = 2.

Will !

(c) Write an equation for the tangent line that passes through the point (1, 2).

Hallian serie

Spirates

Page 2 of 10

1. Shown below is a slope field for which of the following differential equations?

(A)
$$\frac{dy}{dx} = y - x$$

$$(B) \frac{dy}{dx} = x - y$$

(C)
$$\frac{dy}{dx} = \frac{x}{y}$$

(D)
$$\frac{dy}{dx} = \frac{y}{x}$$

(E)
$$\frac{dy}{dx} = -\frac{x}{y}$$

Page 3 of 10

2. Which of the following differential equations could have been used to create the slope field below?

- (A) $\frac{dy}{dx} = xy$
- (B) $\frac{dy}{dx} = -xy$
- (C) $\frac{dy}{dx} = -\frac{y}{x}$
- $(D) \frac{dy}{dx} = -\frac{x}{y}$
 - (E) $\frac{dy}{dx} = y x$

Page 4 of 10

3. Which of the following could be a solution to the slope field below?

- (A) $y = \sin x$
- (B) $y = \cos x$
- (C) $y = \frac{1}{x}$
- (D) $y = -\frac{1}{x}$
- $(E) y = \ln |x|$

Page 5 of 10

- 4. A slope field for the differential equation $\frac{dy}{dx} = 5 y$ will show
 - (A) A vertical asymptote at x = 5.
 - (B) A family of parabolas opening upward.
 - (C) A horizontal asymptote at y = 5.
 - (D) A family of parabolas opening downward.
 - (E) A line with slope -1 and y-intercept 5.
- 5. Which of the following could be a solution(s) to the differential equation $\frac{dy}{dt} = 0.2y$?
 - I. $y = e^{0.2t} + 3$
 - II. $y = 5e^{0.2t}$
 - III. $y = 7e^{0.2t}$
- (A) I only (B) II only (C) III only (D) II and III only (E) I, II, and III
- 6. Which of the following could be a solution(s) to the differential equation $\frac{dy}{dx} = 3x^2$?
- I. $y = x^3 + 4$
- II. $y = 4x^3$
- III. $y = 2x^3 + 1$
- (A) I only (B) II only (C) III only (D) II and III only (E) I, II, and III

Page 6 of 10

7. If the slope fields of $\frac{dy}{dx} = \frac{1}{x}$ and $\frac{dy}{dx} = g(x)$ are perpendicular, then g(x) could be which of the following?

gg- Us

Just Fire

(B)
$$g(x) = \frac{1}{x}$$

(C)
$$g(x) = x$$

(E)
$$g(x) = -\frac{1}{x^2}$$

8. Which of the following differential equations would produce a slope field perpendicular to every line in the slope field created by $\frac{dy}{dx} = \sin x$?

$$(A) \frac{dy}{dx} = -\csc x$$

(B)
$$\frac{dy}{dx} = \csc x$$

(C)
$$\frac{dy}{dx} = -\sec x$$

(D)
$$\frac{dy}{dx} = \cos x$$

(E)
$$\frac{dy}{dx} = -\cos x$$

Page 7 of 10

- 9. Which of the following is a solution to the differential equation $\frac{dy}{dx} = \frac{y-3}{x}$ ($x \ne 0$) with y(1) = 1 and x > 0?
- (A) y = 3 2x
 - (B) y = 3 + 2x
 - (C) $y = 3 + 2e^{x-1}$
 - (D) $y = 3 2e^{x-1}$
 - (E) $y = 3 + 2e^x$
 - 10. Which of the following is a solution to the differential equation $\frac{dy}{dx} = x^2 \cos^2 y$ with $y(0) = \frac{\pi}{4}$?

enutia

Cala. 10

- (A) $y = \frac{x^3}{3} + 1$
- (B) $y = \frac{x^3}{3} 1$
- (C) = $\arctan\left(\frac{x^3}{3} + 1\right)$
- (D) $y = \arctan\left(\frac{x^3}{3} 1\right)$
- (E) $y = \tan\left(\frac{x^3}{3} 1\right)$

Page 8 of 10

Free Response 1:

Consider the differential equation $\frac{dy}{dx} = \frac{3x}{y}$ and $y \neq 0$.

(a) On the axes provided, sketch a slope field for the differential equation given at the nine points indicated.

(b) Find $\frac{d^2y}{dx^2}$ in terms of x and y.

3y - 3x

[PA]

(c) What is the particular solution y = h(x) to the differential equation with the initial

condition
$$h(0) = -1$$
.

$$\int y \, dy = \int 3x$$

$$= 3x^2 + C$$

$$= C$$

 $\frac{1}{3}y^{2} = \frac{3}{3}x^{2} + \frac{1}{3}$ $y^{2} = \frac{3}{3}x^{2} + 1$ $y = \frac{1}{3}x^{2} + 1$ $y = -\sqrt{3}x^{2} + 1$

1 pt sep of V 1 pt antideriv 1 pt C 1 pt answer

(d) Is the point h(0) = -1 a relative minimum, relative maximum, or neither? Justify

h'(0)= 0 h''(0)= -3 Relation 1 pt answer apts
1 pt Just fication

Copyright © 2009 Laying the Foundation®, Inc., Dallas, TX. All rights reserved. Visit: www.layingthefoundation.org

Page 9 of 10

Free Response 2.

Consider the differential equation $\frac{dy}{dx} = x + 2y - 1$.

(a) Sketch a slope field for the given differential equation on the axes provided at the nine points indicated.

(b) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Describe the region in the xy – plane in which the solution curves are concave down.

(c) One particular solution to the differential equation passes through the point (1, 0). Is this point a relative minimum, relative maximum, or neither. Justify your answer.

Copyright © 2009 Laying the Foundation®, Inc., Dallas, TX. All rights reserved. Visit: www.layingthefoundation.org

Page 10 of 10

Free Response 3.

Consider the differential equation $\frac{dy}{dx} = y \cos(\pi x)$.

(a) On the axes provided, sketch a slope field for the given differential equation at the

nine points provided.

(b) Find the particular solution y = g(x) to the differential equation with initial

condition y(1) = 2. $\int \frac{dy}{dy} = \left(\cos \pi \right) \times 0$

COSTIX dx Ina = C

rate Cab to

ae sint to

(c) Write an equation for the tangent line that passes through the point (1, 2).

$$M = a \cos T$$

= -a
y-a = -a(x-1)

[pt equation of line