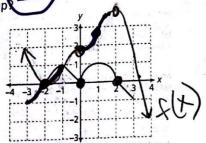



d) 54

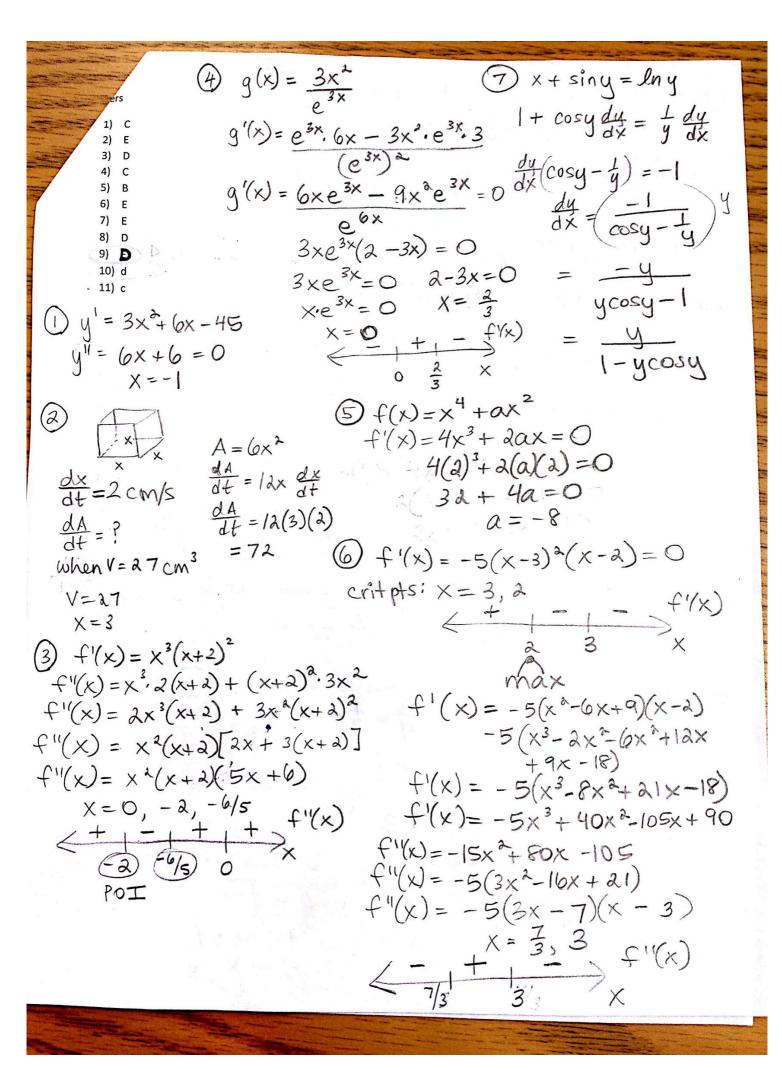
## Test Review for Applications of Derivatives Test

(1.) What is the x-coordinate of the point of inflection of the graph  $y = x^3 + 3x^2 - 45x + 81$ 

- d) 1 -9 b) -5
- (2) The side of a cube is expanding at a constant rate of 2 cm per second. What is the instantaneous rate of change of the surface area of the cube, in cm<sup>2</sup> per second, when its volume is 27 cubic centimeters?
- b) 25 c) 36
- (3.) If  $f'(x) = x^3(x+2)^2$ , then the graph has inflection points when x = a) -2 only c) -2 and 0
- (d) -2 and -6/5 b) 0 only
- The function  $g(x) = \frac{3x^2}{e^{3x}}$  is increasing on which of the following intervals?
  - a) (-∞, 0)
- b) (-∞, 2/3) Suppose  $f(x) = x^4 + ax^2$ . What is the value of a if f has a local minimum at x = 2
- c) -4
- 6) If  $f'(x) = -5(x-3)^2(x-2)$ , which of the following features does the graph of f(x) have?
- d) A local min at x = 2 and point of inflection at x = 3a) A local minimum at x = 2 and a local max at x = 3
- (e) A local max at x = 2 and a point of inflection at x = 3b) A local max at x = 2 and a local min at x = 3
- A point of inflection at x = 2 and a local min at x = 3
- (7.) If  $x + \sin y = \ln y$ , then dy/dx =
- a)  $y + y \cos y$ 
  - y+cosy-1
- The maximum acceleration attained on the interval  $0 \le t \le 3$  by the particle whose velocity is given by
  - $v(t) = t^3 3t^2 + 12t + 4$  is
- 12
- (C)
- 21
- (E) 40


(e)) 72

e) -1/6


e) -2, -6/5 and 0

e) (2/3,∞)

- What is the equation of the line normal to the curve  $y = e^{2x} \ln(x)$  where x = 1?
- (B)  $y = -e^2(x-1)$  (C) y = -e(x-1) (D)  $y = -e^{-2}(x-1)$  (E)  $y = e^2(x-1)$  $y = e^{-2}(x-1)$
- The graph of f'(x) is given below for  $x \in [-3,3]$ . On which interval(s) is the function f(x) both increasing and



- (A) (-2, 2) (B) (-2, 0)U(0, 2)
- (C)(-3, -2)
- (D)(-2,-1)U(0,1)
- 11. What value of c in the open interval (0, 4) satisfies the Mean Value Theorem for  $f(x) = \sqrt{3x+4}$ ?
  - (A)
- (B) 3/5
- (D) 3
- (E)3



8 
$$v(t) = t^{2} - 3t^{2} + 1at + 4$$
 $a(t) = 3t^{2} - 6t + 12$ 
 $a'(t) = 6t - 6 = 0$ 
 $a'(t) =$ 

5=3X = 53