Find the general solution of the Diff EQ.

$\frac{d y}{d x}=\frac{x^{2}+2}{3 y^{2}}$	$\frac{d r}{d s}=0.05 s$	$x y^{\prime}=y$

Find the general solution of the Diff EQ.

$\frac{d y}{d x}=\frac{x^{2}+2}{3 y^{2}}$	$\frac{d r}{d s}=0.05 s$	$x y^{\prime}=y$

Find the general solution of the Diff EQ.

$\frac{d y}{d x}=\frac{x^{2}+2}{3 y^{2}}$	$\frac{d r}{d s}=0.05 s$	$x y^{\prime}=y$

Find the general solution of the Diff EQ.

$\frac{d y}{d x}=\frac{x^{2}+2}{3 y^{2}}$	$\frac{d r}{d s}=0.05 s$	$x y^{\prime}=y$

Find the general solution of the Diff EQ.

$\frac{d y}{d x}=\frac{x^{2}+2}{3 y^{2}}$	$\frac{d r}{d s}=0.05 s$	$x y^{\prime}=y$

Find the general solution of the Diff EQ.

$y y^{\prime}=6 \cos (\pi x)$	$\sqrt{x^{2}-9} y^{\prime}=5 x$	$4 y y^{\prime}-3 e^{x}=0$

Find the general solution of the Diff EQ.

$y y^{\prime}=6 \cos (\pi x)$	$\sqrt{x^{2}-9} y^{\prime}=5 x$	$4 y y^{\prime}-3 e^{x}=0$

Find the general solution of the Diff EQ.

$y y^{\prime}=6 \cos (\pi x)$	$\sqrt{x^{2}-9} y^{\prime}=5 x$	$4 y y^{\prime}-3 e^{x}=0$

Find the general solution of the Diff EQ.

$y y^{\prime}=6 \cos (\pi x)$	$\sqrt{x^{2}-9} y^{\prime}=5 x$	$4 y y^{\prime}-3 e^{x}=0$

Find the general solution of the Diff EQ.

$y y^{\prime}=6 \cos (\pi x)$	$\sqrt{x^{2}-9} y^{\prime}=5 x$	$4 y y^{\prime}-3 e^{x}=0$

Find the particular solution of the Diff EQ.

$\sqrt{x}+\sqrt{y} y^{\prime}=0 \quad \mathrm{y}(1)=4$	$2 x y^{\prime}-\ln x^{2}=0$	$\mathrm{y}(1)=2$	$y \sqrt{1-x^{2}} y^{\prime}-x \sqrt{1-y^{2}}=0 \quad \mathrm{y}(0)=1$

Find the particular solution of the Diff EQ.

| $\sqrt{x}+\sqrt{y} y^{\prime}=0 \quad \mathrm{y}(1)=4$ | $2 x y^{\prime}-\ln x^{2}=0$ | $\mathrm{y}(1)=2$ | $y \sqrt{1-x^{2}} y^{\prime}-x \sqrt{1-y^{2}}=0 \quad \mathrm{y}(0)=1$ |
| :--- | :--- | :--- | :--- | :--- |

Find the particular solution of the Diff EQ.

| $\sqrt{x}+\sqrt{y} y^{\prime}=0 \quad \mathrm{y}(1)=4$ | $2 x y^{\prime}-\ln x^{2}=0 \quad \mathrm{y}(1)=2$ | $y \sqrt{1-x^{2}} y^{\prime}-x \sqrt{1-y^{2}}=0 \quad \mathrm{y}(0)=1$ |
| :--- | :--- | :--- | :--- | :--- |

Find the particular solution of the Diff EQ.

$\sqrt{x}+\sqrt{y} y^{\prime}=0 \quad \mathrm{y}(1)=4$	$2 x y^{\prime}-\ln x^{2}=0$	$\mathrm{y}(1)=2$	$y \sqrt{1-x^{2}} y^{\prime}-x \sqrt{1-y^{2}}=0 \quad \mathrm{y}(0)=1$

Find the particular solution of the Diff EQ.

$\sqrt{x}+\sqrt{y} y^{\prime}=0$	$\mathrm{y}(1)=4$	$2 x y^{\prime}-\ln x^{2}=0$	$\mathrm{y}(1)=2$
		$y \sqrt{1-x^{2}} y^{\prime}-x \sqrt{1-y^{2}}=0 \quad \mathrm{y}(0)=1$	

Find the region bounded by the following curves.

$y=x^{2}-1$ and the x-axis	$y=x^{2}-1$ and $y=-x+1$	$y=x^{2}+2, y=-x, x=0$, and $x=1$

Find the region bounded by the following curves.

$y=x^{2}-1$ and the x-axis	$y=x^{2}-1$ and $y=-x+1$	$y=x^{2}+2, y=-x, x=0$, and $x=1$

Find the region bounded by the following curves.

$y=x^{2}-1$ and the x-axis	$y=x^{2}-1$ and $y=-x+1$	$y=x^{2}+2, y=-x, x=0$, and $x=1$

Find the region bounded by the following curves.

$y=x^{2}-1$ and the x-axis	$y=x^{2}-1$ and $y=-x+1$	$y=x^{2}+2, y=-x, x=0$, and $x=1$

Find the region bounded by the following curves.

$y=x^{2}-1$ and the x-axis	$y=x^{2}-1$ and $y=-x+1$	$y=x^{2}+2, y=-x, x=0$, and $x=1$

Find the region bounded by the following curves.

$y=x^{2}-1$ and the x-axis	$y=x^{2}-1$ and $y=-x+1$	$y=x^{2}+2, y=-x, x=0$, and $x=1$

Consider the differential equation $\frac{d y}{d x}=x y^{2} . \quad$ Consider the differential equation $\frac{d y}{d t}=5 y-5$.
a. Find the general solution of the given differential equation in terms of a constant C .
b. Find the particular solution of the differential condition that satisfies the initial condition $\mathrm{y}(0)=1$.

Answer the following Free Response questions.

Consider the differential equation $\frac{d y}{d x}=\boldsymbol{x} \boldsymbol{y}^{2} . \quad$ Consider the differential equation $\frac{d y}{d t}=5 y-5$.
a. Find the general solution of the given differential equation in terms of a constant C.
b. Find the particular solution of the differential condition that satisfies the initial condition $\mathrm{y}(0)=1$.
a. Draw a slope field for $-3<\mathrm{t}<3$.
b. Solve the differential equation given $\mathrm{y}(0)=5$.
c. Find the equation of the horizontal asymptote of the graph of the solution in part b.
a. Draw a slope field for $-3<\mathrm{t}<3$.
b. Solve the differential equation given $\mathrm{y}(0)=5$.
c. Find the equation of the horizontal asymptote of the graph of the solution in part b.

Answer the following Free Response questions.

Consider the differential equation $\frac{d y}{d x}=x y^{2}$.
a. Find the general solution of the given differential equation in terms of a constant C .
b. Find the particular solution of the differential condition that satisfies the initial condition $\mathrm{y}(0)=1$.

Consider the differential equation $\frac{d y}{d t}=5 y-5$.
a. Draw a slope field for $-3<\mathrm{t}<3$.
b. Solve the differential equation given $\mathrm{y}(0)=5$.
c. Find the equation of the horizontal asymptote of the graph of the solution in part b.

Mixed Review:

1. Find the equation of the tangent line to the curve	
$y=\frac{3 x+4}{4 x-3}$ at the point $(1,7)$.	2. $\int_{0}^{3} \frac{x}{\sqrt{x^{2}+16}} d x$
3. Find the average value of $\sqrt{3 x}$ on the closed interval $[0,9]$.	4. $\frac{d}{d x} \int_{0}^{2 x}\left(e^{t}+2 t\right) d t$
5. Evaluate $\int \frac{10}{x^{2}+8 x+19}$	

Mixed Review:

1. Find the equation of the tangent line to the curve $y=\frac{3 x+4}{4 x-3}$ at the point $(1,7)$.	2. $\int_{0}^{3} \frac{x}{\sqrt{x^{2}+16}} d x$
3. Find the average value of $\sqrt{3 x}$ on the closed interval $[0,9]$.	4. $\frac{d}{d x} \int_{0}^{2 x}\left(e^{t}+2 t\right) d t$
5. Evaluate $\int \frac{10}{x^{2}+8 x+19}$	

Mixed Review:

1. Find the equation of the tangent line to the curve $y=\frac{3 x+4}{4 x-3}$ at the point $(1,7)$.	2. $\int_{0}^{3} \frac{x}{\sqrt{x^{2}+16}} d x$
3. Find the average value of $\sqrt{3 x}$ on the closed interval $[0,9]$.	4. $\frac{d}{d x} \int_{0}^{2 x}\left(e^{t}+2 t\right) d t$
5. Evaluate $\int \frac{10}{x^{2}+8 x+19}$	

Mixed Review:

1. Find the equation of the tangent line to the curve $y=\frac{3 x+4}{4 x-3}$ at the point $(1,7)$.	2. $\int_{0}^{3} \frac{x}{\sqrt{x^{2}+16}} d x$
3. Find the average value of $\sqrt{3 x}$ on the closed interval $[0,9]$.	4. $\frac{d}{d x} \int_{0}^{2 x}\left(e^{t}+2 t\right) d t$
5. Evaluate $\int \frac{10}{x^{2}+8 x+19}$	

