Find the general solution of the Diff EQ.

$$\frac{dy}{dx} = \frac{x^2 + 2}{3y^2}$$

$$\frac{dr}{ds} = 0.05s$$

$$xy'=y$$

Find the general solution of the Diff EQ.

$$\frac{dy}{dx} = \frac{x^2 + 2}{3y^2}$$

$$\frac{dr}{ds} = 0.05s$$

$$xy'=y$$

Find the general solution of the Diff EQ.

$$\frac{dy}{dx} = \frac{x^2 + 2}{3y^2}$$

$$\frac{dr}{ds} = 0.05s$$

$$xy'=y$$

Find the general solution of the Diff EQ.

$$\frac{dy}{dx} = \frac{x^2 + 2}{3y^2}$$

$$\frac{dr}{ds} = 0.05s$$

$$xy'=y$$

Find the general solution of the Diff EQ.

$$\frac{dy}{dx} = \frac{x^2 + 2}{3y^2}$$

$$\frac{dr}{ds} = 0.05s$$

$$xy'=y$$

Find the general solution of the Diff EQ.

$yy' = 6\cos(\pi x)$	$\sqrt{x^2 - 9} y' = 5x$	$4yy'-3e^x=0$

Find the general solution of the Diff EQ.

$yy' = 6\cos(\pi x)$	$\sqrt{x^2 - 9} y' = 5x$	$4yy'-3e^x=0$

Find the general solution of the Diff EQ.

$yy' = 6\cos(\pi x)$	$\sqrt{x^2 - 9} y' = 5x$	$4yy'-3e^x=0$

Find the general solution of the Diff EQ.

$yy' = 6\cos(\pi x)$	$\sqrt{x^2 - 9} y' = 5x$	$4yy'-3e^x=0$

Find the general solution of the Diff EQ.

$yy' = 6\cos(\pi x)$	$\sqrt{x^2 - 9} y' = 5x$	$4yy'-3e^x=0$

Find the particular solution of the Diff EQ.

$\sqrt{x} + \sqrt{y} y' = 0 \text{y(1)} = 4$	$2xy'-\ln x^2=0$	y(1) = 2	$y\sqrt{1-x^2}y'-x\sqrt{1-y^2}=0$ y(0)=1

Find the particular solution of the Diff EQ.

$\sqrt{x} + \sqrt{y} y' = 0 \text{y(1)} = 4$	$2xy'-\ln x^2=0$	y(1) = 2	$y\sqrt{1-x^2}y'-x\sqrt{1-y^2}=0$ y(0)=1

Find the particular solution of the Diff EQ.

$\sqrt{x} + \sqrt{y} y' = 0 \text{y(1)} = 4$	$2xy' - \ln x^2 = 0$	y(1) = 2	$y\sqrt{1-x^2}y'-x\sqrt{1-y^2}=0$ y(0)=1

Find the particular solution of the Diff EQ.

$\sqrt{x} + \sqrt{y} y' = 0 \text{y(1)} = 4$	$2xy' - \ln x^2 = 0 \qquad y(1)$	L) = 2	$y\sqrt{1-x^2}y'-x\sqrt{1-y^2}=0$ y(0)=1

Find the particular solution of the Diff EQ.

$\sqrt{x} + \sqrt{y} y' = 0 \text{y(1)} = 4$	$2xy'-\ln x^2=0$	y(1) = 2	$y\sqrt{1-x^2}y'-x\sqrt{1-y^2}=0$ y(0)=1

Find the region bounded by the following curves.

$y = x^2 - 1$ and the x-axis	$y = x^2 - 1$ and $y = -x + 1$	$y = x^2 + 2$, $y = -x$, $x = 0$, and $x = 1$

Find the region bounded by the following curves.

$y = x^2 - 1$ and the x-axis	$y = x^2 - 1$ and $y = -x + 1$	$y = x^2 + 2$, $y = -x$, $x = 0$, and $x = 1$

Find the region bounded by the following curves.

$y = x^2 - 1$ and the x-axis	$y = x^2 - 1$ and $y = -x + 1$	$y = x^2 + 2$, $y = -x$, $x = 0$, and $x = 1$

Find the region bounded by the following curves.

$y = x^2 - 1$ and the x-axis	$y = x^2 - 1$ and $y = -x + 1$	$y = x^2 + 2$, $y = -x$, $x = 0$, and $x = 1$

Find the region bounded by the following curves.

$y = x^2 - 1$ and the x-axis	$y = x^2 - 1$ and $y = -x + 1$	$y = x^2 + 2$, $y = -x$, $x = 0$, and $x = 1$

Find the region bounded by the following curves.

$y = x^2 - 1$ and the x-axis	$y = x^2 - 1$ and $y = -x + 1$	$y = x^2 + 2$, $y = -x$, $x = 0$, and $x = 1$

Answer the following Free Response questions.

Consider the differential equation $\frac{dy}{dx} = xy^2$.

- a. Find the general solution of the given differential equation in terms of a constant C.
- b. Find the particular solution of the differential condition that satisfies the initial condition y(0) = 1.

Consider the differential equation $\frac{dy}{dt} = 5y - 5$.

- a. Draw a slope field for -3 < t < 3.
- b. Solve the differential equation given y(0) = 5.
- c. Find the equation of the horizontal asymptote of the graph of the solution in part b.

Answer the following Free Response questions.

Consider the differential equation $\frac{dy}{dx} = xy^2$.

- a. Find the general solution of the given differential equation in terms of a constant C.
- b. Find the particular solution of the differential condition that satisfies the initial condition y(0) = 1.

Consider the differential equation $\frac{dy}{dt} = 5y - 5$.

- a. Draw a slope field for -3 < t < 3.
- b. Solve the differential equation given y(0) = 5.
- c. Find the equation of the horizontal asymptote of the graph of the solution in part b.

Answer the following Free Response questions.

Consider the differential equation $\frac{dy}{dx} = xy^2$.

- a. Find the general solution of the given differential equation in terms of a constant C.
- Find the particular solution of the differential condition that satisfies the initial condition y(0) = 1.

Consider the differential equation $\frac{dy}{dt} = 5y - 5$.

- a. Draw a slope field for -3 < t < 3.
- b. Solve the differential equation given y(0) = 5.
- c. Find the equation of the horizontal asymptote of the graph of the solution in part b.

Mixed Review:

1. Find the equation of the tangent line to the curve $y = \frac{3x+4}{4x-3}$ at the point (1, 7).	$2. \int_{0}^{3} \frac{x}{\sqrt{x^2 + 16}} dx$
3. Find the average value of $\sqrt{3x}$ on the closed interval [0, 9].	$4. \frac{d}{dx} \int_{0}^{2x} (e^{t} + 2t) dt$
5. Evaluate $\int \frac{10}{x^2 + 8x + 19}$	

Mixed Review:

1. Find the equation of the tangent line to the curve $y = \frac{3x+4}{4x-3}$ at the point (1, 7).	$2. \int_{0}^{3} \frac{x}{\sqrt{x^2 + 16}} dx$
3. Find the average value of $\sqrt{3x}$ on the closed interval [0, 9].	$4. \frac{d}{dx} \int_{0}^{2x} (e^{t} + 2t) dt$
5. Evaluate $\int \frac{10}{x^2 + 8x + 19}$	

Mixed Review:

1. Find the equation of the tangent line to the curve $y = \frac{3x+4}{4x-3}$ at the point (1, 7).	$2. \int_{0}^{3} \frac{x}{\sqrt{x^2 + 16}} dx$
3. Find the average value of $\sqrt{3x}$ on the closed interval [0, 9].	$4. \frac{d}{dx} \int_{0}^{2x} (e^t + 2t) dt$
5. Evaluate $\int \frac{10}{x^2 + 8x + 19}$	

Mixed Review:

1. Find the equation of the tangent line to the curve $y = \frac{3x+4}{4x-3}$ at the point (1, 7).	$2. \int_{0}^{3} \frac{x}{\sqrt{x^2 + 16}} dx$
3. Find the average value of $\sqrt{3x}$ on the closed interval [0, 9].	$4. \frac{d}{dx} \int_{0}^{2x} (e^{t} + 2t) dt$
5. Evaluate $\int \frac{10}{x^2 + 8x + 19}$	