\qquad

Determine if the following sequences converge or diverge. If it converges, find its limit.

$$
\begin{array}{|l|l|l}
\hline a_{n}=\frac{n^{2}-3}{2+2 n^{2}} & a_{n}=\frac{\sin (n)}{\ln (n+1)} & a_{n}=\frac{2^{n}}{3^{n-2}} \\
\hline a_{n}=\sin \left[\left(\frac{n}{2}\right) \pi\right] & & a_{n}=\mathrm{n}^{1 / \mathrm{n}} \\
\hline
\end{array}
$$

Find the sum of the following geometric series

$\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}$	$1-(4 / 9)+(16 / 81)-(64 / 729)+\cdots$	$\pi+e+\left(e^{2} / \pi\right)+\left(e^{3} / \pi^{2}\right)+\cdots$

Determine if the following converge or diverge

$\sum_{n=1}^{\infty} \frac{1}{n+3^{n}}$	$\sum_{n=1}^{\infty} \frac{(-2)^{2 n}}{n^{n}}$	$\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}-1}}{n^{3}+2 n^{2}+5}$
$\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+2}$	$\sum_{n=1}^{\infty} \tan (1 / n)$	$\sum_{n=1}^{\infty} \frac{n^{2} 2^{n-1}}{(-5)^{n}}$
$\sum_{k=3}^{\infty}[(\ln k) / k]^{k}$	$\sum_{n=1}^{\infty} \frac{n^{2}+1}{5^{n}}$	$\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$
$\sum_{n=1}^{\infty} \frac{\left(2^{k}\right)^{k}}{\left.k^{2}\right)^{k}}$	$\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln n}$	$\sum_{k=1}^{\infty} k^{2} e^{-k}$
$\sum_{n=1}^{\infty} \frac{3^{n} n^{2}}{n!}$	$\sum_{k=1}^{\infty} \frac{5^{k}}{3^{k}+4^{k}}$	$\sum_{n=1}^{\infty}(-1)^{n} 2^{1 / n}$
$\sum_{3(3 / 4)^{n}}$	$\sum_{2} 2 \sqrt[3]{n^{-5}}$	$\sum_{n} \frac{n}{\ln (n+1)}$
$\sum^{\frac{(n+2)!}{2^{n}(n!)}}$	$\sum_{n=1}^{\infty} \frac{n}{2 n+1}$	$\sum_{n=1}^{\infty} \frac{e^{\pi / 2}}{\pi^{n}}$
$\sum_{n=1}^{\infty} \frac{n+1}{n!}$	$\sum_{n=1}^{\infty} \frac{\ln n}{2^{n}}$	

Determine if the following diverges, converges absolutely, or converges conditionally

$\sum_{k=1}^{\infty}(-1)^{k} / \sqrt{k}$	$\sum_{k=3}^{\infty}(\ln k) /(-3)^{k}$	$\sum_{k=1}^{\infty}(-2)^{k} / k^{2}$
$\sum_{k=0}^{\infty}(-1)^{k} k^{3} / e^{k^{4}}$	$\sum_{k=1}^{\infty}(-2)^{k} / k!$	$\sum_{k=3}^{\infty}(-1)^{k} /\left(k \ln ^{2} k\right)$

\qquad

