Round 1	Find dy/dx if $y=\ln \sqrt{x^{2}+1}$	Find $\mathrm{dy} / \mathrm{dx}$ if $y=\frac{\sqrt{x+1}(2-x)^{5}}{(x+3)^{7}}$	Find dy/dx if $y=x^{\cos x}$
Round 2	$\int \frac{1-3 y}{\sqrt{2 y-3 y^{2}}} d y$	$\int \frac{2 x+1}{2 x} d x$	Solve the differential equation $\frac{d y}{d x}=\frac{2 x}{x^{2}+9}(0,4)$
Round 3	A particle moving along a line with acceleration $2+6 \mathrm{t}$ at time t . When $\mathrm{t}=0$, its velocity equals 3 and it is at position $\mathrm{s}=2$. When $t=1$, what is its position?	$\int_{1}^{e} \frac{\sqrt{\ln x}}{x} d x$	$\int_{1}^{4}\|x-3\| d x$
Round 4	$\lim _{x \rightarrow 6^{-}} \ln (6-x)$	$g(x)=\int_{1}^{\ln x}\left(t^{2}+3\right) d t . \text { Find } \mathrm{g}^{\prime}(\mathrm{x})$	$\int \frac{x^{3}-3 x^{2}+5}{x-3} d x$
Round 5	Find the area of the region bound by the graphs of the equations $y=\frac{x^{2}+4}{x} ; \mathrm{x}=1, \mathrm{x}=4, \mathrm{y}=0$	Solve the differential equation $\frac{d r}{d t}=\frac{\sec ^{2} t}{\tan t+1}(\pi, 4)$	$\int \frac{d x}{x^{2}+2 x+1}$

Answers

Round 1	$\frac{x}{x^{2}+1}$	$y^{\prime}=\frac{\sqrt{x+1}(2-x)^{5}}{(x+3)^{7}}\left[\frac{1}{2(x+1)}-\frac{5}{2-x}-\frac{7}{x+3}\right]$	$y^{\prime}=x^{\cos x}\left[-\sin x \ln x+\frac{\cos x}{x}\right]$
Round 2	$\sqrt{2 y-3 y^{2}}$	$x+\frac{1}{2} \ln \|x\|+C$	$\operatorname{Ln}\left\|x^{2}+9\right\|+4+\ln 9$
Round 3	7	18	$5 / 2$
Round 4	$-\infty$	$\frac{(\ln x)^{2}+3}{x}$	$\frac{x^{3}}{3}+5 \ln \|x-3\|+C$
Round 5	$15 / 2+8 \ln 2$	$r=\ln \|\tan t+1\|+4$	$\frac{1}{x+1}+C$

