1. Which of the following series is absolutely convergent?
(A) $\sum_{k=0}^{\infty}(-1)^{k} \frac{k+3}{k+\sqrt{k}}$
(B) $\sum_{k=0}^{\infty}(-1)^{k} \frac{3}{\sqrt{k}}$
(C) $\sum_{k=0}^{\infty}(-1)^{k+1} \frac{\sqrt{k}}{k+3}$
(D) $\sum_{k=0}^{\infty}(-1)^{k} \frac{3}{k+3}$
(E) $\sum_{k=0}^{\infty}(-1)^{k+1} \frac{3}{k \sqrt{k}}$
2. Which of the following series is the power series expansion for $f(x)=x(\cos x-1) ?$
(A) $x-\frac{x^{3}}{2}+\frac{x^{5}}{24}-\cdots$
(B) $-x^{3}+x^{5}-x^{7}+\cdots$
(C) $\frac{x^{3}}{2}-\frac{x^{5}}{24}+\frac{x^{7}}{720}-\cdots$
(D) $-\frac{x^{3}}{2}+\frac{x^{5}}{24}-\frac{x^{7}}{720}+\cdots$
(E) $1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\cdots$
3. The Maclaurin series for $f(x)=\frac{1}{1+x^{2}}$ is $\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}$. What is the Maclaurin series for $g(x)=\tan ^{-1} x$?
(A) $\sum_{k=0}^{\infty}(-1)^{k}(2 k) x^{2 k-1}$
(B) $\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}$
(C) $\sum_{k=0}^{\infty}(-1)^{k+1} \frac{x^{2 k+1}}{2 k}$
(D) $\sum_{k=0}^{\infty}(-1)^{k}(2 k+1) x^{2 k+1}$
(E) $\sum_{k=0}^{\infty}(-1)^{k-1} \frac{x^{2 k-1}}{2 k}$
4. If the first five terms of the Taylor expansion for $f(x)$ about $x=0$ are $3-7 x+\frac{5}{2} x^{2}+\frac{3}{4} x^{3}-6 x^{4}$, then $f^{\prime \prime}(0)=$
(A) $\frac{1}{8}$
(B) $\frac{3}{4}$
(C) $\frac{9}{2}$
(D) 6
(E) 8
5. The power series $\sum_{k=1}^{\infty} \frac{x^{k}}{k}$ converges for which values of x ?
(A) $x=0$
(B) $-1<x<1$
(C) $-1 \leq x<1$
(D) $-1 \leq x \leq 1$
(E) x is any real number.
6. What are all values of a for which the series $\sum_{k=0}^{\infty}\left(\frac{5}{9-a}\right)^{k}$ converges?
(A) $a<4$
(B) $4<a<14$
(C) $a<9$
(D) $a<9$ or $a>9$
(E) $a<4$ or $a>14$
7. The Maclaurin series $\sum_{k=0}^{\infty}(-9)^{k} \frac{x^{4 k}}{(2 k)!}$ represents which function below?
(A) $\cos \left(3 x^{2}\right)$
(B) $\sin \left(3 x^{2}\right)$
(C) $\cos \left(9 x^{4}\right)$
(D) $\tan ^{-1}(3 x)$
(E) $e^{-3 x^{2}}$
8. Which of the following series diverge?
I. $\sum_{k=0}^{\infty} \frac{k^{\frac{3}{2}}+1}{5 k^{2}+7}$
II. $\sum_{k=2}^{\infty}(-1)^{k} \frac{1}{\ln (k)}$
III. $\sum_{k=0}^{\infty}(-1)^{k}\left(\frac{4}{3}\right)^{k}$
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III
\qquad

Series and Sequences

You may use a calculator on the following questions
9. The sixth degree term of the Taylor series expansion for
$f(x)=e^{-\frac{1}{2} x^{2}}$ about $x=0$ has coefficient
(A) $-\frac{1}{48}$
(B) $-\frac{1}{6}$
(C) $\frac{1}{720}$
(D) $\frac{1}{6}$
(E) $-\frac{1}{4608}$
10. Let represent the Taylor Polynomial of a degree n about $x=0$ for \quad. If $T_{n}(2)$ is used to approximate the value of $f(2)=e^{-2}$, then which of the following expressions is NOT less than -?
(A) $f(2)-T_{6}(2)$
(B) $T_{6}(2)-f(2)$
(C) $f(2)-T_{5}(2)$
(D) $T_{5}(2)-f(2)$
(E) $f(2)-T_{7}(2)$

FREE-RESPONSE QUESTION

You may use a calculator for this question.

Let $f(x)$ be a function that is differentiable for all x. The Taylor expansion for $f(x)$ about $x=0$ is given by $T(x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{(k+1) x^{3 k}}{k!}$. The first four nonzero terms of $T(x)$ are given by $T_{4}(x)=1-2 x^{3}+\frac{3 x^{6}}{2!}-\frac{4 x^{9}}{3!}$.
a. Show that $T(x)$ converges for all x.
b. Let $W(x)$ be the Taylor expansion for $x^{2} f^{\prime}(x)$ about $x=0$. Find the general term for $W(x)$ and find $W_{3}(x)$.
c. $\quad f(0.5) \approx T_{4}(0.5)$ and $f(1) \approx T_{4}(1)$. Find the values of $T_{4}(0.5)$ and $T_{4}(1)$.
d. Which value is smaller, $\left|f(0.5)-T_{4}(0.5)\right|$ or $\left|f(1)-T_{4}(1)\right|$? Give a reason for your answer.
\qquad

Series and Sequences

Answer Sheet

$1 . \mathrm{E}$	2. C	3. D	$4 . \mathrm{E}$	$5 . \mathrm{B}$
$6 . \mathrm{A}$	7. C	8. D	$9 . \mathrm{A}$	$10 . \mathrm{C}$

a.	Using the Ratio Test for absolute convergence, $\lim _{k \rightarrow \infty}\left\|\frac{\frac{(k+2) x^{3(k+1)}}{(k+1)!}}{\frac{(k+1) x^{3 k}}{k!}}\right\|<1 \Rightarrow$ $\lim _{k \rightarrow \infty}\left\|\frac{(k+2) x^{3 k+3}}{(k+1)!} \cdot \frac{k!}{(k+1) x^{3 k}}\right\|<1 \Rightarrow$ $\lim _{k \rightarrow \infty}\left\|\frac{k+2}{k+1} \cdot \frac{x^{3}}{k+1}\right\|<1 \Rightarrow 1 \cdot 0<1$ which is true for all x. Therefore $T(x)$ converges for all real numbers.	2: $\left\{\begin{array}{l}\text { 1: correct use of Ratio } \\ \quad \text { Test for Absolute } \\ \quad \text { Convergence } \\ 1: \text { answer }\end{array}\right.$
b.	$\begin{aligned} & f^{\prime}(x)=-3 \cdot 2 x^{2}+\frac{6 \cdot 3 x^{5}}{2!}-\frac{9 \cdot 4 x^{8}}{3!}+\cdots= \\ & \sum_{k=1}^{\infty}(-1)^{k} \frac{3 k(k+1) x^{3 k-1}}{k!} . \text { Therefore } \\ & W(x)=x^{2} f^{\prime}(x)= \\ & \sum_{k=1}^{\infty}(-1)^{k} \frac{3 k(k+1) x^{3 k+1}}{k!} \text { and } W_{3}(x)=-6 x^{4}+9 x^{7}-6 x^{10} . \end{aligned}$	4: $\left\{\begin{array}{l}\text { 1: expanded } f^{\prime}(x) \\ \text { 1: general term of } f^{\prime}(x) \\ 1: \text { general term of } W(x) \\ 1: W_{3}(x)\end{array}\right.$

c. Using direct substitution or a graphing calculator

1: both answers correct evaluation, $T_{4}(0.5)=0.772$ and $T_{4}(1)=-0.167$.
d) Because $T(x)$ is an alternating series, each difference above is smaller than the fifth term of the expansion. Therefore $\mid f(0.5)-$ $T_{4}(0.5) \mid$ is smaller. Alternatively, $\left|f(0.5)-T_{4}(0.5)\right|$ is smaller because 0.5 is closer than 1 to the center $x=0$ of the interval of convergence. Therefore the series converges to $f(x)$ more quickly.

