GENT

Given:
$$\int_{1}^{2} f(x) dx = 5$$
 $\int_{1}^{4} f(x) dx = 9$
 $\int_{1}^{2} g(x) dx = -3$ $\int_{-3}^{1} g(x) dx = 1$

Evaluate: $\int_{-3}^{-3} f(x) dx$

WHAT

0

Given:
$$\int_{1}^{2} f(x) dx = 5$$
$$\int_{1}^{2} g(x) dx = -3$$

$$\int_{1}^{4} f(x) dx = 9$$
$$\int_{-3}^{1} g(x) dx = 1$$

Evaluate: $\int_{4}^{1} f(x) dx$

D0 -9

Given: $\int_{1}^{2} f(x) dx = 5$ $\int_{1}^{2} g(x) dx = -3$

 $\int_{1}^{4} f(x) dx = 9$ $\int_{-3}^{1} g(x) dx = 1$

Evaluate: $\int_{-3}^{2} g(x) dx$

YOU

-2

Given:
$$\int_{1}^{2} f(x) dx = 5$$
$$\int_{1}^{2} g(x) dx = -3$$

$$\int_{1}^{4} f(x) dx = 9$$
$$\int_{-3}^{1} g(x) dx = 1$$

Evaluate: $\int_{2}^{4} f(x) dx$

CALL

4

Given:
$$\int_{1}^{2} f(x) dx = 5$$
 $\int_{1}^{4} f(x) dx = 9$
 $\int_{1}^{2} g(x) dx = -3$ $\int_{-3}^{1} g(x) dx = 1$

Evaluate: $\int_{1}^{2} [4g(x) - 3f(x)] dx$

-27

Evaluate using geometric area.

$$\int_{1}^{3} (1+2x) dx$$

MAN

10

Evaluate using geometric area.

$$\int_0^3 |3x - 5| dx$$

who 41/6

A car slows down as it approaches a red light. When the light turns green, the velocity of the car is shown in the table.

Time, t	Velocity, v(t)
(seconds)	ft/sec
0	8
2	14
4	22
6	30
8	40
10	45

Find the average change in velocity from 0 to 10 seconds.

HAS 3.7

A car slows down as it approaches a red light. When the light turns green, the velocity of the car is shown in the table.

Time, t	Velocity, v(t)
(seconds)	ft/sec
0	8
2	14
4	22
6	30
8	40
10	45

Estimate the total distance traveled during the 10 seconds using 5 equal subintervals and LRAM.

BEEN

228

A car slows down as it approaches a red light. When the light turns green, the velocity of the car is shown in the table.

Time, t	Velocity, v(t)
(seconds)	ft/sec
0	8
2	14
4	22
6	30
8	40
10	45

Estimate the total distance traveled during the 10 seconds using 5 equal subintervals and RRAM.

IN

302

 $\int \left(x^4 - x^3 + x^2\right) dx =$

SUN

 $\int \left(x^2+2\right)(1-x)\,dx=$

FOR

 $\int \left(x^2 - 2\right)^2 dx =$

 $\frac{x^{5}}{5} - \frac{4x^{3}}{3} + 4x + C$

 $\int x^3 \left(x^3 - 2\right) dx =$

 $\frac{3x^5 + 2x^3 - x^2}{x^2}$ dx =