GENT

Given: $\int_{1}^{2} f(x) d x=5$

$$
\begin{aligned}
& \int_{1}^{4} f(x) d x=9 \\
& \int_{-3}^{1} g(x) d x=1
\end{aligned}
$$

Evaluate: $\int_{-3}^{-3} f(x) d x$

WHAT

Given: $\int_{1}^{2} f(x) d x=5$
$\int_{1}^{4} f(x) d x=9$

$$
\int_{1}^{2} g(x) d x=-3
$$

$$
\int_{-3}^{1} g(x) d x=1
$$

Evaluate: $\int_{4}^{1} f(x) d x$

DO

Given: $\int_{1}^{2} f(x) d x=5$
$\int_{1}^{4} f(x) d x=9$
$\int_{1}^{2} g(x) d x=-3$

$$
\int_{-3}^{1} g(x) d x=1
$$

Evaluate: $\int_{-3}^{2} g(x) d x$

YOU

Given: $\int_{1}^{2} f(x) d x=5$

$$
\int_{1}^{2} g(x) d x=-3
$$

$$
\begin{aligned}
& \int_{1}^{4} f(x) d x=9 \\
& \int_{-3}^{1} g(x) d x=1
\end{aligned}
$$

Evaluate: $\int_{2}^{4} f(x) d x$

CALL

Given: $\int_{1}^{2} f(x) d x=5 \quad \int_{1}^{4} f(x) d x=9$

$$
\int_{1}^{2} g(x) d x=-3 \quad \int_{-3}^{1} g(x) d x=1
$$

Evaluate: $\int_{1}^{2}[4 g(x)-3 f(x)] d x$

A

Evaluate using geometric area.

$$
\int_{1}^{3}(1+2 x) d x
$$

MAN

Evaluate using geometric area.

$$
\int_{0}^{3}|3 x-5| d x
$$

WHO

A car slows down as it approaches a red light. When the light turns green, the velocity of the car is shown in the table.

Time, t (seconds)	Velocity, $\mathrm{v}(\mathrm{t})$ $\mathrm{ft} / \mathrm{sec}$
0	8
2	14
4	22
6	30
8	40
10	45

Find the average change in velocity from 0 to 10 seconds.

HAS

A car slows down as it approaches a red light. When the light turns green, the velocity of the car is shown in the table.

Time, t (seconds)	Velocity, $\mathrm{v}(\mathrm{t})$ $\mathrm{ft} /$ sec
0	8
2	14
4	22
6	30
8	40
10	45

Estimate the total distance traveled during the 10 seconds using 5 equal subintervals and LRAM.

BEEN

A car slows down as it approaches a red light. When the light turns green, the velocity of the car is shown in the table.

Time, t (seconds)	Velocity, $\mathrm{v}(\mathrm{t})$ $\mathrm{ft} / \mathrm{sec}$
0	8
2	14
4	22
6	30
8	40
10	45

Estimate the total distance traveled during the 10 seconds using 5 equal subintervals and RRAM.

IN

THE

$\int\left(x^{4}-x^{3}+x^{2}\right) d x=$

SUN

$\int\left(x^{2}+2\right)(1-x) d x=$

FOR

TOO

LONG?

A

TAN

