PRACTICE PROBLEM SET 34

Now try these problems. The answers are in Chapter 21.

- 1. If $\frac{dy}{dx} = \frac{7x^2}{y^3}$ and y(3) = 2, find an equation for y in terms of x.
- 2. If $\frac{dy}{dx} = 5x^2 y$ and y(0) = 6, find an equation for y in terms of x.
- 3. If $\frac{dy}{dx} = \frac{1}{y + x^2 y}$ and y(0) = 2, find an equation for y in terms of x.
- **4.** If $\frac{dy}{dx} = \frac{e^x}{y^2}$ and y(0) = 1, find an equation for y in terms of x.
- 5. If $\frac{dy}{dx} = \frac{y^2}{x^3}$ and y(1) = 2, find an equation for y in terms of x.
- 6. If $\frac{dy}{dx} = \frac{\sin x}{\cos y}$ and $y(0) = \frac{3\pi}{2}$, find an equation for y in terms of x.
- 7. A colony of bacteria grows exponentially and the colony's population is 4,000 at time t = 0 and 6,500 at time t = 3. How big is the population at time t = 10?
- 8. A rock is thrown upward with an initial velocity, v(t), of 18 m/s from a height, h(t), of 45 m. If the acceleration of the rock is a constant -9 m/s², find the height of the rock at time t=4.
- 9. The rate of growth of the volume of a sphere is proportional to its volume. If the volume of the sphere is initially 36π ft³, and expands to 90π ft³ after 1 second, find the volume of the sphere after 3 seconds.
- 10. A radioactive element decays exponentially proportionally to its mass. One-half of its original amount remains after 5,750 years. If 10,000 grams of the element are present initially, how much will be left after 1,000 years?
- 11. Use Euler's Method, with h = 0.25, to estimate y(1) if y' = y x and y(0) = 2.
- 12. Use Euler's Method, with h = 0.2, to estimate y(1) if y' = -y and y(0) = 1.
- 13. Use Euler's Method, with h = 0.1, to estimate y(0.5) if $y' = 4x^3$ and y(0) = 0.
- 14. Sketch the slope field for $\frac{dy}{dx} = 2x$.
- 15. Sketch the slope field for $\frac{dy}{dx} = -\frac{x}{y}$.
- **16.** Sketch the slope field for $\frac{dy}{dx} = \frac{x}{y}$.

8	13.90			-		
						- 17
			ſ		•	9
			ı			
-		-	-		-	_
			ŀ			
			-			
•			L	٠		
			Г			
•		•	+			
			-		K#22	
_		-	_			
•		•	-			
			+			
•			L	8.98		
•			r			
•		•	+			9
		•	+			
_	_		-			
•		•	-			
			-			
						12