1.
$$\int (3x^2 - 2x + 3) dx =$$
(A) $x^3 - x^2 + C$ (B) $3x^3 - x^2 + 3x + C$ (C) $x^3 - x^2 + 3x + C$
(D) $\frac{1}{2}(3x^2 - 2x + 3)^2 + C$ (E) none of these

(A)
$$x^3 - x^2 + C$$

(B)
$$3x^3 - x^2 + 3x + 6$$

(C)
$$x^3 - x^2 + 3x + 6$$

(D)
$$\frac{1}{2}(3x^2-2x+3)^2+C$$

20.
$$\int \frac{x^3 - x - 1}{x^2} dx =$$

3. Let f(x) be defined as below. Evaluate $\int_{0}^{6} f(x) dx$.

(A)
$$\frac{\frac{1}{4}x^4 - \frac{1}{2}x^2 - x}{\frac{1}{3}x^3} + C$$

$$f(x) = \begin{cases} x & 0 < x \le 2\\ 1 & 2 < x \le 4\\ \frac{1}{2}x & 4 < x \le 6 \end{cases}$$

(B)
$$1 + \frac{1}{r^2} + \frac{2}{r^3} + C$$

(C)
$$\frac{x^2}{2} - \ln|x| - \frac{1}{x} + C$$

(D)
$$\frac{x^2}{2} - \ln|x| + \frac{1}{x} + C$$

(E)
$$\frac{x^2}{2} - \ln|x| + \frac{2}{x^3} + C$$

The equation of the curve whose slope at point (x, y) is $x^2 - 2$ and which contains the point (1, -3) is

(A)
$$y = \frac{1}{3}x^3 - 2x$$
 (B) $y = 2x - 1$ (C) $y = \frac{1}{3}x^3 - \frac{10}{3}$

$$(\mathbf{B}) \quad y = 2x - 1$$

(C)
$$y = \frac{1}{3}x^3 - \frac{10}{3}$$

(D)
$$y = \frac{1}{3}x^3 - 2x - \frac{4}{3}$$
 (E) $3y = x^3 - 10$

(E)
$$3y = x^3 - 10$$

8. Which of the following statements are true?

- If the graph of a function is always concave up, then the left-hand Riemann sums with the same subdivisions over the same interval are always less than the right-hand Riemann sum.
- If the function f is continuous on the interval [a, b] and $\int_a^b f(x) dx = 0$, then f must have at least one zero between a and b.
- If f'(x) > 0 for all x in an interval, then the function f is concave up in that interval.
- A) I only
- B) II only
- C) III only
- D) II and III only
- E) None are true.

1101 (1999AB, Calculator). The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function R of time t. The table below shows the rate as measured every 3 hours for a 24-hour period.

					10	15	10	01	0.1
t (hours)	0	3	6	9		15			
R(t) (gal/hr)	0.0	10.4	10.0	11.2	11.4	11.3	10.7	10.2	9.6
K(t) (gai/nr)	9.6	10.4	10.8	11.2	11.1	11.0		-0.2	0.0

- a) Use a midpoint Riemann sum with 4 subdivisions of equal length to approximate the value of $\int_0^{24} R(t) dt$. Using correct units, explain the meaning of your answer in terms of water flow.
- b) Is there some time t, 0 < t < 24, such that R'(t) = 0? Justify your answer.

922. Oil is leaking out of a tanker damaged at sea. The damage to the tanker is worsening as evidenced by the increased leakage each hour, recorded in the following table.

(h)	0	1	9	3	1	5	6	7	8
							222		700
Leakage (gal./hour)	50	70	97	136	190	265	369	516	720

a) Give an upper and lower estimate of the total quantity of oil that has escaped after 5 hours.

An object's velocity during a 10 second time interval is shown by the graph below: Velocity (m/s)

- a.) Determine the object's total distance traveled and displacement.
- b.) At t = 0, the object's position is x = 2 m. Find the object's position at t = 2, t = 4.

- 1. $\int (3x^3 2x + 3) dx =$
- $(C) x^3 x^2 + 3x + C$
- (A) $x^3 x^2 + C$ (B) $3x^3 x^2 + 3x + C$ (D) $\frac{1}{2}(3x^2 2x + 3)^2 + C$ (E) none

- 20. $\int \frac{x^3 x 1}{x^2} dx =$
 - (A) $\frac{\frac{1}{4}x^4 \frac{1}{2}x^2 x}{\frac{1}{2}x^3} + C$
- 3. Let f(x) be defined as below. Evaluate $\int_{a}^{b} f(x) dx$.
- $\frac{x^{2}}{2}\Big|_{0}^{2} = 2 0 = 2$
- $f(x) = \begin{cases} x & 0 < x \le 2\\ 1 & 2 < x \le 4\\ \frac{1}{\pi}x & 4 < x \le 6 \end{cases}$

- (B) $1 + \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}} + C$

- (C) $\frac{x^2}{2} \ln|x| \frac{1}{x} + C$ (D) $\frac{x^2}{2} - \ln|x| + \frac{1}{x} + C$
- C) 7
- D) 8 x - ln/x/ - x
- (E) $\frac{x^2}{2} \ln|x| + \frac{2}{x^3} + C$
- (E))9
- x ln/x1 + ++ c
- The equation of the curve whose slope at point (x, y) is $x^2 2$ and which contains the point (1, -3) is

- (A) $y = \frac{1}{3}x^3 2x$
- (B) y = 2x 1 (C) $y = \frac{1}{3}x^3 \frac{10}{3}$
- (x 1-2)dx

- (D) $y = \frac{1}{3}x^3 2x \frac{4}{3}$ (E) $3y = x^3 10$

 $\frac{x^3}{3}$ - 2x + C

8. Which of the following statements are true?

- -3===-2(1)+C
- If the graph of a function is always concave up, then the left-hand Riemann sums with the same subdivisions over the same interval are always less than the right-hand $3 = \frac{1}{3} - \lambda + C$ Riemann sum.
- Riemann sum.

 If the function f is continuous on the interval [a,b] and $\int_a^b f(x) dx = 0$, then f must $3 = -\frac{5}{3} + \frac{5}{3} + \frac{5}{3}$ have at least one zero between a and b.
 - If f'(x) > 0 for all x in an interval, then the function f is concave up in that interval

A) I only

- C) III only
- D) II and III only E) None are true.

-9 -5+C C=14

$$3\left(\frac{x^{3}}{3} - 2x + \frac{-4}{3}\right)$$

1101 (1999AB Calculator). The nate of a list mater of a pine in calleng nor hour is
1101 (1999AB, Calculator). The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function R of time t . The table below shows the rate as measured
every 3 hours for a 24-hour period.
t (hours) 0 3 6 9 12 15 18 21 24 R(t) (gal/hr) 9.6 10.4 10.8 11.2 11.4 11.3 10.7 (10.2) 9.6
a) Use a midpoint Riemann sum with 4 subdivisions of equal length to approximate the
value of $\int_{0}^{24} R(t) dt$. Using correct units, explain the meaning of your answer in terms of
water flow.
b) Is there some time t , $0 < t < 24$, such that $R'(t) = 0$? Justify your answer.
(10,4) + 6(11,2) + 6(11,3) + 6(10,2) = 258,6 gal
b) Is there some time t , $0 < t < 24$, such that $R'(t) = 0$? Justify your answer. $6(10.4) + 6(11.2) + 6(11.3) + 6(10.2) = 258.69a$ Between 0 and 34 hrs. $abad$ 58.6 gal flow out
b) 4PS, P(0)-P(24) PT anamonis at 04+24
b) yes, R(0) = R(24), RT quarantes there is a t, 0 < t = 24 922. Oil is leaking out of a tanker damaged at sea. The damage to the tanker is worsening as such that
evidenced by the increased leakage each hour, recorded in the following table. $R'(t) = 0$
Time (hours) 0 1 2 3 4 5 6 7 8
Leakage (gal./hour) 50 70 97 136 190 265 369 516 720
a) Give an upper and lower estimate of the total quantity of oil that has escaped after 5
hours.
Give an upper and lower estimate of the total quantity of oil that has escaped after 8
hours. $(50+70+97+136+190)=543$ gal
C) LRAIN. 1 (904 10 + 911 11 11 11 11 11 11 11 11 11 11 11 11
(2) LRAM: $1(50+70+97+136+190)=543$ gale RRAM: $1(70+97+136+190+265)=758$ gal
An object's velocity during a 10 second time interval is shown by the graph below:
4+
100/200 Jen
3+ 1/101
1+13-1111 4.5
Time (seconds)
1 2 3 4 5 6 7 8 29 10 13 1 17 [1]
$-1 + \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{5}{6} + \frac{6}{7} + \frac{7}{8} + \frac{29}{2} + \frac{10}{2} $ dist = 17,5 m (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
The many the object of total distance have found displayed.
b.) At $t=0$, the object's position is $x=2$ m. Find the object's position at $t=2, t=4$.
$t = \lambda : 2 + 3 = 5 m (1)$
t=4;2+9=11m(4)