1. \(\int (3x^2 - 2x + 3) \, dx = \)
 (A) \(x^3 - x^2 + C \) \quad (B) \(3x^3 - x^2 + 3x + C \) \quad (C) \(x^3 - x^2 + 3x + C \)
 (D) \(\frac{1}{2} (3x^2 - 2x + 3)^3 + C \) \quad (E) none of these

20. \(\int \frac{x^3 - x - 1}{x^2} \, dx = \)
 \[\frac{\frac{1}{4} x^4 - \frac{1}{2} x^2 - x}{\frac{1}{3} x^3} + C \]
 (A) \(\frac{1}{4} x^4 - \frac{1}{2} x^2 - x \)
 (B) \(1 + \frac{1}{x^2} + \frac{2}{x^3} + C \) \quad A) 5
 (C) \(\frac{x^2}{2} - \ln|x| - \frac{1}{x} + C \) \quad B) 6
 (D) \(\frac{x^2}{2} - \ln|x| + \frac{1}{x} + C \) \quad C) 7
 (E) \(\frac{x^2}{2} - \ln|x| + \frac{2}{x^3} + C \) \quad D) 8

3. Let \(f(x) \) be defined as below. Evaluate \(\int_0^6 f(x) \, dx \).
 \[f(x) = \begin{cases}
 x & 0 < x \leq 2 \\
 1 & 2 < x \leq 4 \\
 \frac{1}{2} x & 4 < x \leq 6
 \end{cases} \]

77. The equation of the curve whose slope at point \((x, y)\) is \(x^2 - 2\) and which contains
 the point \((1, -3)\) is

 (A) \(y = \frac{1}{3} x^3 - 2x \) \quad (B) \(y = 2x - 1 \) \quad (C) \(y = \frac{1}{3} x^3 - \frac{10}{3} \)
 (D) \(y = \frac{1}{3} x^3 - 2x - \frac{4}{3} \) \quad (E) \(3y = x^3 - 10 \)

8. Which of the following statements are true?

I. If the graph of a function is always concave up, then the left-hand Riemann sums
 with the same subdivisions over the same interval are always less than the right-hand
 Riemann sum.

II. If the function \(f \) is continuous on the interval \([a, b]\) and \(\int_a^b f(x) \, dx = 0 \), then \(f \)
 must have at least one zero between \(a \) and \(b \).

III. If \(f'(x) > 0 \) for all \(x \) in an interval, then the function \(f \) is concave up in that interval.

A) I only

B) II only

C) III only

D) II and III only

E) None are true.
1101 (1999AB, Calculator). The rate at which water flows out of a pipe, in gallons per hour, is
given by a differentiable function R of time t. The table below shows the rate as measured
every 3 hours for a 24-hour period.

<table>
<thead>
<tr>
<th>t (hours)</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(t)$ (gal/hr)</td>
<td>9.6</td>
<td>10.4</td>
<td>10.8</td>
<td>11.2</td>
<td>11.4</td>
<td>11.3</td>
<td>10.7</td>
<td>10.2</td>
<td>9.6</td>
</tr>
</tbody>
</table>

a) Use a midpoint Riemann sum with 4 subdivisions of equal length to approximate the
value of $\int_0^{24} R(t) \, dt$. Using correct units, explain the meaning of your answer in terms of
water flow.

b) Is there some time t, $0 < t < 24$, such that $R'(t) = 0$? Justify your answer.

922. Oil is leaking out of a tanker damaged at sea. The damage to the tanker is worsening as
evidenced by the increased leakage each hour, recorded in the following table.

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leakage (gal./hour)</td>
<td>50</td>
<td>70</td>
<td>97</td>
<td>136</td>
<td>190</td>
<td>265</td>
<td>369</td>
<td>516</td>
<td>720</td>
</tr>
</tbody>
</table>

a) Give an upper and lower estimate of the total quantity of oil that has escaped after 5
hours.

An object's velocity during a 10 second time interval is shown by the graph below:

Velocity (m/s)

[Graph showing velocity over time]

a.) Determine the object's total distance traveled and displacement.
b.) At $t = 0$, the object's position is $x = 2$ m. Find the object's position at $t = 2$, $t = 4$.

Scanned by CamScanner
1. \(\int (3x^2 - 2x + 3) \, dx = \)
 (A) \(x^3 - x^3 + C \) \(\textbf{(B)} \) \(3x^2 - x^3 + 3x + C \) \(\textbf{(C)} \) \(x^2 - x^3 + 3x + C \)
 (D) \(\frac{1}{2} (3x^2 - 2x + 3)^3 + C \) \(\textbf{(E)} \) none of these

20. \(\int \frac{x^3 - 3}{x} \, dx = \)
 \(\frac{x^3 - \frac{3x^3 - x}{2}}{3} + C \)
 (A) \(\frac{1}{4} x^4 - \frac{1}{2} x^3 - x \)
 (B) \(1 + \frac{1}{x^2} + \frac{2}{x^3} + C \)
 (C) \(\frac{x^2}{2} - \ln|x| - \frac{1}{x} + C \)
 (D) \(\frac{x^2}{2} - \ln|x| + \frac{1}{x} + C \)
 (E) \(\frac{x^2}{2} - \ln|x| + \frac{2}{x} + C \)

3. Let \(f(x) \) be defined as below. Evaluate \(\int_0^6 f(x) \, dx. \)
 \(\frac{x^2}{2} \bigg| _0^6 \)
 \(2 - 0 = 2 \)
 \(\frac{x^4}{4} \bigg| _0^4 \)
 \(\frac{1}{4} x^4 \bigg| _0^4 \)
 \(\frac{1}{4} x^4 \bigg| _1^4 \)
 \(A) 5 \)
 \(B) 6 \)
 \(C) 7 \)
 \(D) 8 \)
 \(E) 9 \)

77. The equation of the curve whose slope at point \((x, y)\) is \(x^2 - 2 \) and which contains the point \((1, -3)\) is
 (A) \(y = \frac{1}{3} x^3 - 2x \)
 (B) \(y = 2x - 1 \)
 (C) \(y = \frac{1}{3} x^3 - \frac{10}{3} \)
 (D) \(y = \frac{1}{3} x^3 - 2x - \frac{4}{3} \)
 (E) \(3y = x^3 - 10 \)

8. Which of the following statements are true?

I. If the graph of a function is always concave up, then the left-hand Riemann sums with the same subdivisions over the same interval are always less than the right-hand Riemann sum.

II. If the function \(f \) is continuous on the interval \([a, b]\) and \(\int_a^b f(x) \, dx = 0 \), then \(f \) must have at least one zero between \(a \) and \(b \).

III. If \(f'(x) > 0 \) for all \(x \) in an interval, then the function \(f \) is concave up in that interval.

A) I only
B) II only
C) III only
D) II and III only
E) None are true.
1101 (1996AB, Calculator). The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function \(R(t) \) of time \(t \). The table below shows the rate as measured every 3 hours for a 24-hour period.

<table>
<thead>
<tr>
<th>(t) (hours)</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R(t)) (gal/hr)</td>
<td>9.6</td>
<td>10.4</td>
<td>10.8</td>
<td>11.2</td>
<td>11.4</td>
<td>11.3</td>
<td>10.7</td>
<td>(10.2)</td>
<td>9.6</td>
</tr>
</tbody>
</table>

(a) Use a midpoint Riemann sum with 4 subdivisions of equal length to approximate the value of \(\int_0^{24} R(t) \, dt \). Using correct units, explain the meaning of your answer in terms of water flow.

(b) Is there some time \(t \), \(0 < t < 24 \), such that \(R'(t) = 0 \)? Justify your answer.

\[6(10.9) + 6(11.2) + 6(11.3) + 6(10.2) = 258.6 \text{ gal} \]

Between 0 and 14 hrs, about 258.6 gal flow out.

922. Oil is leaking out of a tanker damaged at sea. The damage to the tanker is worsening as evidenced by the increased leakage each hour, recorded in the following table.

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leakage (gal./hour)</td>
<td>50</td>
<td>70</td>
<td>97</td>
<td>136</td>
<td>190</td>
<td>265</td>
<td>369</td>
<td>516</td>
<td>720</td>
</tr>
</tbody>
</table>

(a) Give an upper and a lower estimate of the total quantity of oil that has escaped after 5 hours.

X Give an upper and a lower estimate of the total quantity of oil that has escaped after 8 hours.

LRAM: \(1 \left(50 + 70 + 97 + 136 + 190 \right) = 543 \text{ gal} \)

RRAM: \(1 \left(70 + 97 + 136 + 190 + 265 \right) = 758 \text{ gal} \)

An object's velocity during a 10 second time interval is shown by the graph below:

- Velocity (m/s)
- Time (seconds)
- dist = 17.5 m
- displacement = 9.5 m

a.) Determine the object's total distance traveled and displacement.

b.) At \(t = 0 \), the object's position is \(x = 2 \) m. Find the object's position at \(t = 2 \), \(t = 4 \).

\[t = 2: \overline{0} + 3 = 5 \text{ m} \]

\[t = 4: \overline{2} + 9 = 11 \text{ m} \]