Multiple Choice Non-Calculator 1. What is the	f'(x) = (x) $f'(x) = (x)$ the instantaneous rate of	$\frac{-1)(2x)-(x^{2}-1)^{2}}{(x^{2}-1)^{2}}$ $= \frac{1(4)-2}{1(4)-2}$ If change at $x^{\frac{1}{2}}$ of the fi	$\frac{2-2(1)}{2-2(1)}$ = 24 unction f given by $f(x)$	KEY $(x-x^{2}+2)^{2}$ $=\frac{x^{2}-2}{1}$? $(x-1)^{2}$
D (A) -2	(B) $\frac{1}{6}$	(C) $\frac{1}{2}$	(D) 2	x-1 (E) 6
what v	alue of x do the graphs	2× $(x) = 3e^{2x}$ and let g be the sof f and g have parallel t	$g'(x) = (8x)^2$ e function given by $g(x)$ angent lines?	intersect)=6x³. At
(A) -0.701	(B) -0.567	(C)0.391	(D) -0.302	(E) -0.258
		$f(x) = x + \ln x$. What if at $x = c$ is the same as $f(x) = 1 + \frac{1}{x}$		
4. Let f be a to the gra	(B) 1.244 I function given by f uph of f at $(x, f(x))$ ϵ	$f(x) = c \text{ is the same as}$ $f(x) = 1 + \sqrt{x}$ $f(x) = 2e^{4x^2} \text{. For what valequal to 3?}$	$\frac{1}{x} = A$	(E) 2.452 TSECT ne line tangent X = 3
(A)0.168	(B) 0.276	(C) 0.318	(D) 0.342	(E) 0.551

5. Let $f(x) = \sqrt{x}$. If the rate of change of f at x = c is twice its rate of change at x = 1, then c = c

(A)
$$\frac{1}{4}$$
 (B) 1 (C) 4 (D) $\frac{1}{\sqrt{2}}$ (E) $\frac{1}{2\sqrt{2}}$ $f'(x) = \frac{1}{2\sqrt{x}}$ $f'(c) = \frac{1}{2\sqrt{c}}$ $\frac{1}{2\sqrt{c}} = 1$ $2\sqrt{c} = 1$ $\sqrt{c} = \frac{1}{2}$ $C = \frac{1}{4}$

2004 AB/BC 1

1. Traffic flow is defined as the rate at which cars pass through an intersection, measured in cars per minute. The traffic flow at a particular intersection is modeled by the function F defined by

*
$$F(t) = 82 + 4\sin\left(\frac{t}{2}\right)$$
 for $0 \le t \le 30$,

where F(t) is measured in cars per minute and t is measured in minutes.

- (a) To the nearest whole number, how many cars pass through the intersection over the 30-minute period?
- (b) Is the traffic flow increasing or decreasing at t = 7? Give a reason for your answer.
- (c) What is the average value of the traffic flow over the time interval $10 \le t \le 15$? Indicate units of measure.
- (d) What is the average rate of change of the traffic flow over the time interval $10 \le t \le 15$? Indicate units of

b)
$$F'(7) = -1.872$$
 or -1.873

b)
$$F'(7) = -1.872$$
 or -1.873 decreasing b/c
 $F'(7)$ is reg.
d) $F(15) - F(10) = 1.517$ or 1.518
 $15 - 10$ = 1.517 or 1.518
 2004 Form BAB2 cars/min²

- 2. For $0 \le t \le 31$, the rate of change of the number of mosquitoes on Tropical Island at time t days is modeled by $R(t) = 5\sqrt{t} \cos\left(\frac{t}{5}\right)$ mosquitoes per day. There are 1000 mosquitoes on Tropical Island at time t = 0.
 - (a) Show that the number of mosquitoes is increasing at time t = 6.
 - (b) At time t = 6, is the number of mosquitoes increasing at an increasing rate, or is the number of mosquitoes increasing at a decreasing rate? Give a reason for your answer.
 - (c) According to the model, how many mosquitoes will be on the island at time t = 31? Round your answer to the nearest whole number.
 - (d) To the nearest whole number, what is the maximum number of mosquitoes for $0 \le t \le 31$? Show the analysis that leads to your conclusion.

a)
$$R(6) = 4.437$$
 or 4.438

Since R(6) is pos, the # of mosquitoes is increasing