Polar Quiz Review #1 - 11 Calculator Inactive; #12 - 18 Calculator Active

Convert the following to equations to polar form. Solve for r.

1.
$$y = 4$$

2.
$$3x - 5y + 2 = 0$$

3.
$$x^2 + y^2 = 25$$

Convert the following equations to rectangular form. Solve for y.

4.
$$r = 3sec\theta$$

5.
$$r = 2\sin\theta$$

6.
$$\theta = \frac{5\pi}{6}$$

For the following, find dy/dx for the given value of θ .

7.
$$r = 2 + 3\sin\theta; \theta = \frac{3\pi}{2}$$

8. $r = 3(1 - \cos\theta); \theta = \frac{\pi}{2}$ 9. $r = 4\sin\theta; \theta = \frac{\pi}{2}$

10.
$$r = 2\sin(3\theta)$$
; $\theta = \frac{\pi}{4}$

11. Find the points of horizontal and vertical tangency for $r = 1 + sin\theta$. Give your answers in polar form, (r, θ)

12. Given the polar curve $r = \theta + \cos 2\theta$ for $0 \le \theta \le \pi$.

a)	Sketch the	graph o	of the	curve

b) Find the angle θ that corresponds to the point(s) on the curve where x = -2

c) Find the angle θ that corresponds to the points(s) on the curve where y = 1

Find the area of the following. Calculator Active

13.	Inside r	= 4 +	$2\cos\theta$

14.

15. inside the circle r = 2 &outside the cardioid r = $2(1-\sin\theta)$

16. shared by the circle r=2 and the cardioid $r = 2(1 - \cos\theta)$

17. inside one petal of the four petaled rose $r = cos2\theta$

18. shared by the circles r = $2\cos\theta$ and $r=2\sin\theta$

The curve above is drawn in the xy-plane and is described by the equation in polar coordinates $r = \theta + \sin(2\theta)$ for $0 \le \theta \le \pi$, where r is measured in meters and θ is measured in radians. The derivative of r with respect to θ is given by $\frac{dr}{d\theta} = 1 + 2\cos(2\theta)$.

- (a) Find the area bounded by the curve and the x-axis.
- (b) Find the angle θ that corresponds to the point on the curve with x-coordinate -2.
- (c) For $\frac{\pi}{3} < \theta < \frac{2\pi}{3}$, $\frac{dr}{d\theta}$ is negative. What does this fact say about r? What does this fact say about the curve?
- (d) Find the value of θ in the interval $0 \le \theta \le \frac{\pi}{2}$ that corresponds to the point on the curve in the first quadrant with greatest distance from the origin. Justify your answer.

The graphs of the polar curves r = 3 and $r = 3 - 2\sin(2\theta)$ are shown in the figure above for $0 \le \theta \le \pi$.

- (a) Let R be the shaded region that is inside the graph of r = 3 and inside the graph of $r = 3 2\sin(2\theta)$. Find the area of R.
- (b) For the curve $r = 3 2\sin(2\theta)$, find the value of $\frac{dx}{d\theta}$ at $\theta = \frac{\pi}{6}$.

(c) The distance between the two curves changes for $0 < \theta < \frac{\pi}{2}$.

Find the rate at which the distance between the two curves is changing with respect to θ when $\theta = \frac{\pi}{3}$.

(d) A particle is moving along the curve $r = 3 - 2\sin(2\theta)$ so that $\frac{d\theta}{dt} = 3$ for all times $t \ge 0$. Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{6}$.

The graphs of the polar curves r = 3 and $r = 4 - 2\sin\theta$ are shown in the figure above. The curves intersect when $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$.

- (a) Let S be the shaded region that is inside the graph of r = 3 and also inside the graph of $r = 4 2\sin\theta$. Find the area of S.
- (b) A particle moves along the polar curve $r = 4 2\sin\theta$ so that at time t seconds, $\theta = t^2$. Find the time t in the interval $1 \le t \le 2$ for which the x-coordinate of the particle's position is -1.
- (c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time t = 1.5.