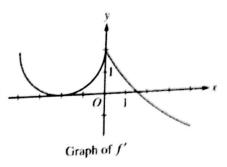

AP Calculus – Optimization Problems 3 Name: KEY	почина поста от стото обложения постоя поста поста поста поста поста поста обливающего поста обливающего поста
1. A point moves on the x-axis in such a way that its velocity at time t , $(t > 0)$ is given	cn by $v = \frac{\ln t}{t}$. At what
value of t does v attain its maximum? (No calculator)	V= +. ent
A. 1 B. $e^{\frac{1}{2}}$ (C. $e^{\frac{3}{2}}$ D. $e^{\frac{3}{2}}$ E. There is no maximal $a = \frac{1}{t}$, $\frac{1}{t}$ that $\left(-\frac{1}{t^2}\right) = \frac{1}{t^2}$ that $\left(-\frac{1}{t}\right)$	mum value for v .
2. The derivative of $f(x) = \frac{x^4}{3} - \frac{x^5}{5}$ attains its maximum value at $x = \frac{1}{2}$ (No calculator) A1 B. 0 C. 1 D. $\frac{4}{3}$ E. $\frac{5}{3}$ The absolute maximum value of $f(x) = x^3 - 3x^2 + 12$ on the closed interval $[-2]$	1 - lnt) = 0 1 - lnt = 0 2nt = 1 1 - st = e
5. The description value of $I(x) = x = 5x + 12$ on the crossed material $I(x)$	4] occurs at $x = 8x - 12x^{2}$ (1) = $8 - 12 = -4$ CCV (1)
4. The volume of a cylindrical tin can with a top and bottom is to be 16π cubic incamount of tin is to be used to construct the can, what must be the height, in inch (No Calculator)	ches. If a minimum les, of the $\frac{can+(x)}{-2}$ $\frac{-2}{-8}$ $\frac{-2}{2}$ $\frac{12}{8}$ $\frac{2}{4}$ $\frac{2}{8}$
A. $2\sqrt[3]{2}$ B. $2\sqrt{2}$ C. $2\sqrt[3]{4}$ D.)4 E. 8	2 8 4 28
5 If $x = 2x = 0$, what is the minimum value of the product $yy/2$	-8-12-12



 $M = 2 \times ^{3} - 8 \times \times = 2 \quad y = -4$ 6. The maximum acceleration attained on the interval, $0 \le t \le 3$ by the particle whose velocity is given by $v(t) = t^{3} - 3t^{2} + 12t + 4. \quad \alpha(t) = 3t^{2} - 6t + 12$ 12 C. 14 (D.) 21 E. 40 a(t) = 2t - 6t + 12 0 + 4 1 - 3 + 12 + 4 3 + 40 27 - 27 + 36 + 4(No calculator)

$$f'(x) = \begin{cases} g(x) & \text{for } -4 \le x \le 0\\ 5e^{-x/3} - 3 & \text{for } 0 < x \le 4 \end{cases}$$

The graph of the continuous function f', shown in the figure above, has x-intercepts at x = -2 and $x = 3\ln\left(\frac{5}{3}\right)$. The graph of g on $-4 \le x \le 0$ is a semicircle, and f(0) = 5.

a. For -4 < x < 4, find all values of x at which the graph of f has a point of inflection. Justify your answer.

$$(1)_{X=0}^{X=-\lambda}$$
: $f''(x)$ goes reg to pos(1) justify

b. For $-4 \le x \le 4$, find the value of x at which f has an absolute maximum. Justify your answer.

For
$$-4 \le x \le 4$$
, find the value of x at which y has all absolute manual $f(x) = 0$ at $x = -2$ and $x = 3ln(\frac{5}{3})$

On (-4,-2): f'(x) is pos, sof is increasing (1) $x = 3\ln(\frac{2}{3})$ b/c $(0,3\ln(\frac{2}{3}))$

(1)
$$x = 30n(\frac{5}{3})$$
 b/c
f/goes from
g postoneg(1)

On (3ln(\frac{5}{3}),4): f'(x) is neg, sof is docreasing 2. The rate at which people enter an auditorium for a rock concert is modeled by the function R given by R(t) $1380t^2 - 675t^3$ for $0 \le t \le 2$; R(t) is measured in people per hour. No one is in the auditorium at time t = 0. when the doors open. The doors close and the concert begins at time t = 2.

Find the time when the rate at which people enter the auditorium is a maximum. Justify your answer.

Find the time when the rate at which people enter the auditorium is a maximum. Such as
$$(1) R'(+) = 0$$
 when $t = 0$ and $t = 1.363$ (A)
$$R'(+) = 2760t - 2025t^{2}$$

$$A = 854.527$$

$$2 = 120$$

$$R = 1.363$$

$$0 0$$
A 854.527
2 120
max rate at $t = 1.363$