IVT:

							X	
1)	t (sec)	0	15	25	30	35	50	60
	v(t) (ft/sec)	-10	-15	-10	-7	-5	0	13

A toy car travels on a straight path. During the time interval $0 \le t \le 60$ seconds, the toy car's velocity v, measured in feet per second is a continuous function.

For 0 < t < 60 must there be a time t when v(t) = -2?

* v is a continuous function

Yes, since
$$v(35) = -52 - 2 < 0 = V(50)$$
,
Intermediate Value Theorem
guarantees a value, t, in (35,50)
such that $v(t) = -2$.

2) Given the function h(x) is continuous:

$$f(2) = 5$$
 and $f(5) = 2$.

Let h(x) = f(x) - x. Explain why there must be a value r for 2 < r < 5 such that h(r) = 0.

Since
$$h(5) = -3 < 0 < 3 = h(2)$$
,
then Intermediate Value Theorem
guarantees a value, r, in (2,5)
such that $h(r) = 0$.