- Consider the differential equation $\frac{dy}{dx} = 6x^2 x^2y$. Let y = f(x) be a particular solution to this differential equation with the initial condition f(-1) = 2.
 - (a) Use Euler's method with two steps of equal size, starting at x = −1, to approximate f(0). Show the work that leads to your answer.
 - (b) At the point (-1, 2), the value of $\frac{d^2y}{dx^2}$ is -12. Find the second-degree Taylor polynomial for f about x = -1.
- Let f be the function given by $f(x) = e^{\frac{x}{2}}$.
 - (a) Write the first four nonzero terms and the general term for the Taylor series expansion of f(x) about x = 0.
 - (b) Use the result from part (a) to write the first three nonzero terms and the general term of the series expansion about x = 0 for $g(x) = \frac{e^{\frac{x}{2}} 1}{x}$.