Name: _	Key

MC

Calculator Inactive

The function f is defined by $f(x) = \sqrt{25 - x^2}$ for $-5 \le x \le 5$

a) Find
$$f'(x) = \frac{1}{2} (25 - x^2)^{-1/2} - 2x$$

 $f'(x) = \frac{-x}{\sqrt{25 - x^2}}$

(x); f (x)

b) Write an equation for the line tangent to the graph of f at x = -3

$$f'(-3) = \frac{-(-3)}{\sqrt{25-(-3)^2}} = \frac{3}{\sqrt{16}} = \frac{3}{4}$$

$$f(-3) = \frac{\sqrt{25-(-3)^2}}{\sqrt{25-(-3)^2}} = \sqrt{16} = 4$$

$$\sqrt{25-(3)^2} = \sqrt{16} = 4$$

 $y - 4 = \frac{3}{4}(x+3)$

c) Let g be the function defined by $g(x) = \begin{cases} f(x) & \text{for } -5 \le x \le -3 \\ x+7 & \text{for } -3 < x \le 5 \end{cases}$. Is g continuous at x = -3? Use the definition f(x) = -3. Is g at f(x) = -3.

lim
$$g(x) = \sqrt{25 - (-3)^2} = 4$$

 $\lim_{x \to -3} -g(x) = \sqrt{35 - (-3)^2} = 4$
 $\lim_{x \to -3} -g(x) = -3 + 7 = 4$

$$\lim_{x \to -3^{-}} g'(x) = \frac{3}{4}$$

$$g(-3) = \sqrt{25-(-3)^2} = 4$$

$$\lim_{x \to -3+9} (x) = 1$$

Yes,
$$\lim_{x\to -3} g(x) = g(-3) = 4$$

No b/c
$$\lim_{x \to -3-g'(x) \neq \lim_{x \to -3+g'(x)} g'(x)}$$

d) Write the equation of the tangent line of g(x) parallel to line 4x - 3y = 3

$$4x - 3y = 3$$

$$-3y = -4x + 3$$

$$-3$$

$$\frac{-x}{\sqrt{a5-x^2}} = \frac{4}{3}$$
$$-3x = 4\sqrt{a5-x^2}$$

$$\frac{9}{16} x^{2} = 25 - x^{2}$$

$$9x^{2} = 400 - 16x^{2}$$

$$25x^{2} = 400$$

$$-3x = 4\sqrt{a5-x^2}$$

$$(-\frac{3}{4}x) = (\sqrt{a5-x^2})^2$$

$$x^{2}=16$$

 $x=\pm 4$ $x=-4$

 $y = \frac{4}{3} \times -1$ $M = \frac{4}{3} \times -1$ e) Write, but do not evaluate, the limit used to find the derivative of f.

OR BEAUTI)

$$\lim_{h \to 0} \frac{\sqrt{25 - (x + h)^2} - \sqrt{25 - x^2}}{h}$$

$$y-3=\frac{4}{3}(x+4)$$

Calculator Active Practice question

The wind chill is the temperature, in degrees Fahrenheit (°F), a human feels based on the air temperature in degrees Fahrenheit, and the wind velocity v, in miles per hour (mph). If the air temperature is $32^{\circ}F$, then the wind chill is given by $W(v) = 55.6 - 22.1v^{0.16}$ and is valid for $5 \le x \le 60$.

a) Find W'(20). Using correct units, explain the meaning of W'(20) in terms of the wind chill.

$$W'(20) = -.286$$
 or $-.285$

when v=20 mph, the wind chill is decreasing at a rate of Ovalue Oexplain

b) Find the average rate of change of W over the interval $5 \le v \le 60$. Find the value of v at which the instantaneous rate of change of W is equal to the average rate of change of W over the interval $5 \le v \le 60$.

$$\frac{W(60)-W(5)}{60-5}=-.254 \text{ or } -.253 \text{ (A)}$$

- (1) W'(V)=AROC (1) value of
- c) Over the time interval $0 \le t \le 4$ hours, the air temperature is a constant 32 degrees F. At time t =0, the wind velocity is v = 20 mph. If the wind velocity measures at a constant rate of 5 mph per hour, what is the rate of change of the wind chill with respect to time at t = 3 hours? Indicate units of measure.

$$\frac{dW}{dt} = \frac{1}{t=3}$$

$$t=0 \ v=20$$

 $t=1 \ v=25$
 $t=2 \ v=30$

Dunits a, c