Section 5.3 – FTC Free Response Questions

1. (Stewart – no calculator) Let $g(x) = \int_0^x f(t)dt$, where f is the function whose graph is shown to the right.

b. On what intervals is *g* increasing?

c. Where does g have a maximum value?

d. Evaluate g'(2)

e. Find any points of inflection. Justify your answers.

Section 5.3 – FTC Free Response Questions

2. (Lucia – calculator) Water is draining out of a tank at a variable rate as given by the chart and graph below.

t	R(t)
(min)	(gallons/min)
0	0
5	5
10	20
20	30
30	15
35	0

a. Approximate the volume of water that has leaked from the tank from 0 to 35 minutes using a Riemann sum with a right-hand end point for the five unequal intervals indicated by the chart.

b. Interpret the meaning of $\frac{1}{20} \int_{10}^{30} R(t) dt$ and find its value with the appropriate units using the graph.

c. Calculate R'(25) with appropriate units. Justify your answer.

d. If the rate of the leak is modeled by $Q(x) = 16.78\sin(0.15x - 1.25) + 14.6$, at what time is the water leaking the fastest?

Section 5.3 – FTC Free Response Questions

3. (Lucia – no calculator) Let f by a function defined in the closed interval $0 \le x \le 6$. The graph of f consists of three line segments and a semicircle.

Let
$$g(x) = 3 + \int_{2}^{x} f(t)dt$$
.

a. Find g(1), g'(1), and g''(1).

b. What is the average rate of change of g(x) in the interval $2 \le x \le 6$?

c. What is the average value of g'(x) on the same interval as part b)?

d. Identify the x – coordinate(s) of any relative extrema. Justify your answers.

e. Identify the x – coordinate(s) of any points of inflection. Justify your answers.

Section 5.3 – FTC Free Response Questions

4. (Lucia – no calculator) The graph of f(t), a continuous function defined on the interval $-3 \le t \le 4$, consists of two line segments and a quarter circle, as show in the figure. Let

a. Evaluate g(0) and g(4).

b. Find the x – coordinate of the absolute maximum and absolute minimum of g(x). Justify your answers.

c. Does $\lim_{x\to 2} g''(x)$ exist? Give a reason for your answer.

d. Find the x – coordinates of all inflection points of g(x). Justify your answer.

Section 5.3 – FTC Free Response Questions

1. (Stewart – no calculator) Let $g(x) = \int f(t)dt$, where f is the function whose graph is shown to the right.

a. Evaluate
$$g(0)$$
, $g(1)$, $g(2)$, $g(3)$, and $g(6)$.

$$g(0) = S_0^3 + 44 dt = 0$$
 $g(3) = S_0^3 + 44 dt = 7$
 $g(1) = S_0^3 + 44 dt = 2$ $g(1) = S_0^3 + 44 dt = 74 = 3$

b. On what intervals is g increasing?

g is increasing when g' = f(x) is positive.

c. Where does g have a maximum value?

g has a max when g'(x) = f(x) =0 and g'(x) = f(x) chances sion from

PUSITIVE TO NEWATIVE. THIS OCCURS AT X = 3

d. Evaluate g'(2)

e. Find any points of inflection. Justify your answers.

q"(x) = f'(x) must change sion. This occurs AT x = 2.

Section 5.3 – FTC Free Response Questions

2. (Lucia – calculator) Water is draining out of a tank at a variable rate as given by the chart and graph below.

t	R(t)
(min)	(gallons/min)
0	0
5	5
10	20
20	30
30	15
35	0

a. Approximate the volume of water that has leaked from the tank from 0 to 35 minutes using a Riemann sum with a right-hand end point for the five unequal intervals indicated by the chart.

$$5(5)+5(20)+10(30)+10(15)+5(0) = 575$$
 GALLONS.

b. Interpret the meaning of $\frac{1}{20} \int_{10}^{30} R(t)dt$ and find its value with the appropriate units using the graph.

c. Calculate R'(25) with appropriate units. Justify your answer.

d. If the rate of the leak is modeled by $Q(x) = 16.78\sin(0.15x - 1.25) + 14.6$, at what time is the water leaking the fastest?

$$Q'(x) = (15)(16.78)\cos(.15x + 1.25) = 0$$
 AT $X = 18.805$
 $Q''(x) = -(.15)^2(16.78)\sin(.15x + 1.25)$
 $Q''(18.805) = -.3776 + 0$: max AT $X = 18.805$

Section 5.3 – FTC Free Response Questions

3. (Lucia – no calculator) Let f by a function defined in the closed interval $0 \le x \le 6$. The graph of f consists of three line segments and a semicircle.

Let
$$g(x) = 3 + \int_{1}^{x} f(t)dt$$
.

$$g(1) = 3 + S_2 + 1$$

 $g'(1) = f(1) = -2$
 $g''(1) = f'(1) \rightarrow DNE$

The same

b. What is the average rate of change of g(x) in the interval $2 \le x \le 6$?

$$\frac{g(b)-g(2)}{6-2} = \frac{(3+S_2^6+14)at) - (3+S_2^2+14)JL}{4}$$

$$= \frac{2-m_2}{4} = \frac{4-\pi}{8}$$

c. What is the average value of g'(x) on the same interval as part b)?

$$g_{ME} = \frac{1}{4} \int_{z}^{6} f(t) dt$$

$$= \frac{1}{4} \left(\frac{2^{-1/2}}{8} \right) = \frac{4 - \pi}{8}$$

d. Identify the x – coordinate(s) of any relative extrema. Justify your answers.

$$g'(x) = f(x) = 0$$
 At $x = 2.4$ Since $g'(x)$ 6005 Ferm - TO + AT $x = 4$,

SIGN TEST FRE $g'(x)$: $x = 4$ IS A RELATIVE MIN.

e. Identify the x -coordinate(s) of any points of inflection. Justify your answers.

POINTS OF INFLECTION AT X=1,2,3

Section 5.3 – FTC Free Response Questions

4. (Lucia – no calculator) The graph of f(t), a continuous function defined on the interval $-3 \le t \le 4$, consists of two line segments and a quarter circle, as show in the figure. Let $g(x) = \int_{-3}^{x} f(t)dt.$

a. Evaluate g(0) and g(4).

b. Find the x – coordinate of the absolute maximum and absolute minimum of g(x). Justify your answers.

g'(x) =
$$f(x) = 0$$
 At $x = -1, 2$

Since g' changes from to -,

MAX AT $x = -1$.

Since g' changes from - To t,

c. Does $\lim_{x \to a} g''(x)$ exist? Give a reason for your answer.

$$g'' = f'$$

Since the Lift and Right

whole Limits are different,

 $\lim_{x \to 2^+} f' = 1$
 $\lim_{x \to 2^-} f' = \infty$
 $\lim_{x \to 2^-} f' = \infty$

d. Find the x – coordinates of all inflection points of g(x). Justify your answer.

NEED given TO CHAMBE SIGN P.O.T. AT
$$X = 0$$

$$G^{(1)}(x) = f^{(1)}(x)$$

$$\frac{1}{3} = \frac{1}{0} + \frac{1}{2}$$