Derivatives, Rates of Change, and Equations of Lines

- 1) Find the slope of y = (x + 1)(x + 2) at x = -3. 3
- 2) Find the equation of the tangent line in problem #1 at the point (-3, 10). y = -3(x+3)
- 3) Find the slope of the secant line (average rate of change) over the interval [1,4] of $y = \frac{1}{\sqrt{x}}$.
- 4) Find the instantaneous rate of change in problem #3 at x = 4.
- 5) Determine the x-value of the point in the interval $[0,2\pi)$ where the function $y=x+\cos x$ has a horizontal tangent line.
- 7) Find the equation of the normal line (perpendicular to the tangent line) of $y = 3x^2 4x$ at x = 2.

1)
$$y = x^2 + 3x + 2$$
 2) $y - 10 = -3(x + 3)$
 $y' = 2x + 3$
 $f'(-3) = 2(-3) + 3$

$$f'(-3) = 2(-3) + 3$$

$$3)_{y} = \frac{1}{\sqrt{x}}$$

$$f(4) - f(1)$$

$$\frac{1}{2} - 1 = -\frac{1}{2} \cdot \frac{1}{3} = -\frac{1}{6}$$

4)
$$y = x^{-1/2}$$

 $y' = -\frac{1}{2}x^{-3/2} + (4) = -\frac{1}{2}(4)^{3/2}$
 $y' = -\frac{1}{2(\sqrt{x})^3} + (4) = \frac{-1}{2 \cdot 4^{3/2}}$

$$y = x + \cos x$$

$$y' = 1 - \sin x$$

$$0 = 1 - \sin x$$

$$-1 = -\sin x$$

$$1 = \sin x$$

$$x = \overline{x}$$

$$0)y = 2x + 3x^{1/2}$$

$$y' = 2 + \frac{3}{2}x^{-1/2}$$

$$y' = 2 + \frac{3}{2\sqrt{x}}$$

$$2\sqrt{x} = 0$$

$$x = 0$$

$$y = 2x + 3x^{2}$$

$$y' = 2 + \frac{3}{2}x^{-1/2}$$

$$y' = 2 + \frac{3}{2\sqrt{x}}$$

$$y' = 6x - 4$$

$$f'(x) = 8$$

$$(2, 4)$$

$$\sqrt{x} = 0$$

$$x = 0$$

$$x = 0$$