\qquad
\qquad Date

Derivatives and Equations in Polar Coordinates

1) The graphs of the polar curves $r_{1}=6-4 \cos \theta$ and $r_{2}=4$ are shown below. Enter both graphs in your graphing calculator and "explore" them.

2) Find the coordinates of the points of intersection of both curves for $0 \leq \theta<2 \pi$. Write your answers using polar coordinates.
3) Find $\frac{d r_{1}}{d \theta}$ and $\frac{d r_{2}}{d \theta}$ in terms of θ.

Find $\left.\frac{d r_{1}}{d \theta}\right|_{\theta=\frac{\pi}{3}}$ and $\left.\frac{d r_{2}}{d \theta}\right|_{\theta=\frac{\pi}{3}}$. Interpret the meaning of your answers in the context of the problem.
4) A particle moves along the curve $r_{1}=6-4 \cos \theta$ such that $\theta=-2 t$. Find $\left.\frac{d r_{1}}{d t}\right|_{t=1}$, both by hand and efficiently using your graphing calculator. Interpret the meaning of your answer in the context of the problem.
5) Write an expression for $y_{1}(\theta)$, the y-coordinate of each point on the graph of $r_{1}=6-4 \cos \theta$. For $0 \leq \theta<\frac{\pi}{2}$, there is one point on r_{1} with y-coordinate equal to 4 . Find the subject point. Express your answer using both rectangular and polar coordinates.
6) Write in terms of x and y an equation for the line tangent to the graph of the curve r_{1} at the point where $\theta=\frac{\pi}{3}$.
7) Recall that a particle moves along the curve $r_{1}=6-4 \cos \theta$ such that $\theta=-2 t$. Find the position vector of the particle $\langle x(t), y(t)\rangle$ in terms of t. Use your calculator to find the velocity vector of the particle at $t=1$.

Derivatives and Equations in Polar Coordinates

1) The graphs of the polar curves $r_{1}=6-4 \cos \theta$ and $r_{2}=4$ are shown below. Enter both graphs in your graphing calculator and "explore" them.

2) Find the coordinates of the points of intersection of both curves for $0 \leq \theta<2 \pi$. Write your answers using polar coordinates.

Collision points: $r_{1}=r_{2} \rightarrow 6-4 \cos \theta=4$

$$
\theta=\frac{\pi}{3} \quad \text { or } \frac{5 \pi}{3}
$$

For both values of θ, we have $r=4$. Collision points are $\left(4, \frac{\pi}{3}\right)$ and $\left(4, \frac{5 \pi}{3}\right)$
3) Find $\frac{d r_{1}}{d \theta}$ and $\frac{d r_{2}}{d \theta}$ in terms of θ.

Find $\left.\frac{d r_{1}}{d \theta}\right|_{\theta=\frac{\pi}{3}}$ and $\left.\frac{d r_{2}}{d \theta}\right|_{\theta=\frac{\pi}{3}}$. Interpret the meaning of your answers in the context of the problem.

$$
\begin{gathered}
\frac{d r_{1}}{d \theta}=4 \sin \theta \\
\frac{d r_{2}}{d \theta}=0 \\
\left.\frac{d r_{1}}{d \theta}\right|_{\theta=\frac{\pi}{3}}=4 \sin \frac{\pi}{3}=2 \sqrt{3}
\end{gathered}
$$

When we trace the graph of r_{1} at $\theta=\frac{\pi}{3}$ the distance from the graph to the pole (origin) is increasing at the rate $2 \sqrt{3}$.

$$
\left.\frac{d r_{2}}{d \theta}\right|_{\theta=\frac{\pi}{3}}=0
$$

When we trace the graph of r_{2} at $\theta=\frac{\pi}{3}$ the distance from the graph to the pole (origin) is not changing.
4) A particle moves along the curve $r_{1}=6-4 \cos \theta$ such that $\theta=-2 t$. Find $\left.\frac{d r_{1}}{d t}\right|_{t=1}$, both by hand and efficiently using your graphing calculator. Interpret the meaning of your answer in the context of the problem.

$$
\begin{gathered}
r_{1}=6-4 \cos (-2 t) \\
\text { By hand: } \frac{d r_{1}}{d t}=-8 \sin (-2 t), \text { so }\left.\frac{d r_{1}}{d t}\right|_{t=1}=-8 \sin (-2) \\
\text { Using a calculator: }\left.\frac{d(6-4 \cos (-2 t))}{d t}\right|_{t=1}=7.274
\end{gathered}
$$

Using a calculator the problem can also be done as

$$
\left.\frac{d r_{1}}{d t}\right|_{t=1}=\left.\left.\frac{d r_{1}}{d \theta}\right|_{\theta=-2} \cdot \frac{d \theta}{d t}\right|_{t=1}=\left.\frac{d(6-4 \cos \theta)}{d \theta}\right|_{\theta=-2} \cdot(-2)=(-3.637)(-2)=7.274
$$

5) Write an expression for $y_{1}(\theta)$, the y-coordinate of each point on the graph of $r_{1}=6-4 \cos \theta$. For $0 \leq \theta<\frac{\pi}{2}$, there is one point on r_{1} with y-coordinate equal to 4 . Find the subject point. Express your answer using both rectangular and polar coordinates.

$$
\begin{gathered}
y_{1}=r_{1} \cdot \sin \theta=(6-4 \cos \theta)(\sin \theta)=6 \sin \theta-4 \cos \theta \sin \theta \\
y_{1}=4=6 \sin \theta-4 \cos \theta \sin \theta \rightarrow \text { use your calculator in "function mode" to get } \theta=1.1528 \\
\text { Store this value to obtain } r_{1}(1.1528)=4.3766 \text {. } \\
\text { Polar coordinates: } r_{1}=4.3766 \text { and } \theta=1.1528
\end{gathered}
$$

For rectangular coordinates:

$$
\begin{gathered}
x_{1}=r_{1} \cos \theta \rightarrow x_{1}(1.1528)=1.776 \\
y_{1}=r_{1} \sin \theta \rightarrow y_{1}(1.1528)=4
\end{gathered}
$$

6) Write in terms of x and y an equation for the line tangent to the graph of the curve r_{1} at the point where $\theta=\frac{\pi}{3}$.

$$
\begin{gathered}
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{d\left(r_{1} \sin \theta\right)}{d \theta}}{\frac{d\left(r_{1} \cos \theta\right)}{d \theta}}=\frac{4 \sin \theta \sin \theta+(6-4 \cos \theta) \cos \theta}{4 \sin \theta \cos \theta-(6-4 \cos \theta) \sin \theta} \\
\left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{3}}=-\frac{5}{\sqrt{3}} \quad \text { and } \theta=\frac{\pi}{3} \text { we have: } \quad x_{1}\left(\frac{\pi}{3}\right)=2 \text { and } y_{1}\left(\frac{\pi}{3}\right)=2 \sqrt{3} \\
\text { Tangent line: } y-2 \sqrt{3}=-\frac{5}{\sqrt{3}}(x-2)
\end{gathered}
$$

7) Recall that a particle moves along the curve $r_{1}=6-4 \cos \theta$ such that $\theta=-2 t$. Find the position vector of the particle $\langle x(t), y(t)\rangle$ in terms of t. Use your calculator to find the velocity vector of the particle at $t=1$.

$$
\text { Using } x_{1}=r_{1} \cos \theta \text { and } y_{1}=r_{1} \sin \theta \text { and } \theta=-2 t:
$$

position vector: $\langle(6-4 \cos (-2 t)) \cos (-2 t),(6-4 \cos (-2 t)) \sin (-2 t)\rangle$
Using a calculator, velocity vector at $t=1$ is

$$
\left\langle\left.\frac{d x_{1}}{d t}\right|_{t=1},\left.\frac{d y_{1}}{d t}\right|_{t=1}\right\rangle=\langle-16.9659,-0.235\rangle
$$

