

Name_

Seat # ____

Date

Derivatives and Equations in Polar Coordinates

1) The graphs of the polar curves $r_1 = 6 - 4 \cos \theta$ and $r_2 = 4$ are shown below. Enter both graphs in your graphing calculator and "explore" them.

2) Find the coordinates of the points of intersection of both curves for $0 \le \theta < 2\pi$. Write your answers using polar coordinates.

3) Find
$$\frac{dr_1}{d\theta}$$
 and $\frac{dr_2}{d\theta}$ in terms of θ .
Find $\frac{dr_1}{d\theta}\Big|_{\theta=\frac{\pi}{3}}$ and $\frac{dr_2}{d\theta}\Big|_{\theta=\frac{\pi}{3}}$. Interpret the meaning of your answers in the context of the problem.

4) A particle moves along the curve $r_1 = 6 - 4 \cos \theta$ such that $\theta = -2t$. Find $\frac{dr_1}{dt}\Big|_{t=1}$, both by hand and efficiently using your graphing calculator. Interpret the meaning of your answer in the context of the problem.

5) Write an expression for $y_1(\theta)$, the y-coordinate of each point on the graph of $r_1 = 6 - 4 \cos \theta$. For $0 \le \theta < \frac{\pi}{2}$, there is one point on r_1 with y-coordinate equal to 4. Find the subject point. Express your answer using both rectangular and polar coordinates.

6) Write in terms of *x* and *y* an equation for the line tangent to the graph of the curve r_1 at the point where $\theta = \frac{\pi}{3}$.

7) Recall that a particle moves along the curve $r_1 = 6 - 4 \cos \theta$ such that $\theta = -2t$. Find the position vector of the particle $\langle x(t), y(t) \rangle$ in terms of *t*. Use your calculator to find the velocity vector of the particle at t = 1.

ANSWER KEY

Derivatives and Equations in Polar Coordinates

1) The graphs of the polar curves $r_1 = 6 - 4 \cos \theta$ and $r_2 = 4$ are shown below. Enter both graphs in your graphing calculator and "explore" them.

2) Find the coordinates of the points of intersection of both curves for $0 \le \theta < 2\pi$. Write your answers using polar coordinates.

Collision points: $r_1 = r_2 \rightarrow 6 - 4 \cos \theta = 4$ $\theta = \frac{\pi}{3}$ or $\frac{5\pi}{3}$ For both values of θ , we have r = 4. Collision points are $\left(4, \frac{\pi}{3}\right)$ and $\left(4, \frac{5\pi}{3}\right)$

3) Find $\frac{dr_1}{d\theta}$ and $\frac{dr_2}{d\theta}$ in terms of θ . Find $\frac{dr_1}{d\theta}\Big|_{\theta=\frac{\pi}{3}}$ and $\frac{dr_2}{d\theta}\Big|_{\theta=\frac{\pi}{3}}$. Interpret the meaning of your answers in the context of the problem.

$$\frac{dr_1}{d\theta} = 4\sin\theta$$
$$\frac{dr_2}{d\theta} = 0$$
$$\frac{dr_1}{d\theta}\Big|_{\theta = \frac{\pi}{3}} = 4\sin\frac{\pi}{3} = 2\sqrt{3}$$

When we trace the graph of r_1 at $\theta = \frac{\pi}{3}$ the distance from the graph to the pole (origin) is increasing at the rate $2\sqrt{3}$.

$$\left.\frac{dr_2}{d\theta}\right|_{\theta=\frac{\pi}{3}} = 0$$

When we trace the graph of r_2 at $\theta = \frac{\pi}{3}$ the distance from the graph to the pole (origin) is not changing.

4) A particle moves along the curve $r_1 = 6 - 4 \cos \theta$ such that $\theta = -2t$. Find $\frac{dr_1}{dt}\Big|_{t=1}$, both by hand and efficiently using your graphing calculator. Interpret the meaning of your answer in

the context of the problem.

$$r_{1} = 6 - 4\cos(-2t)$$
By hand:
$$\frac{dr_{1}}{dt} = -8\sin(-2t), \text{ so } \frac{dr_{1}}{dt}\Big|_{t=1} = -8\sin(-2t)$$
Using a calculator:
$$\frac{d(6-4\cos(-2t))}{dt}\Big|_{t=1} = 7.274$$

Using a calculator the problem can also be done as

$$\frac{dr_1}{dt}\Big|_{t=1} = \frac{dr_1}{d\theta}\Big|_{\theta=-2} \cdot \frac{d\theta}{dt}\Big|_{t=1} = \frac{d(6-4\cos\theta)}{d\theta}\Big|_{\theta=-2} \cdot (-2) = (-3.637)(-2) = 7.274$$

- 5) Write an expression for $y_1(\theta)$, the y-coordinate of each point on the graph of $r_1 = 6 4 \cos \theta$. For $0 \le \theta < \frac{\pi}{2}$, there is one point on r_1 with y-coordinate equal to 4. Find the subject point. Express your answer using both rectangular and polar coordinates.
 - $y_1 = r_1 \cdot \sin \theta = (6 4 \cos \theta)(\sin \theta) = 6 \sin \theta 4 \cos \theta \sin \theta$ $y_1 = 4 = 6 \sin \theta - 4 \cos \theta \sin \theta \rightarrow \text{use your calculator in "function mode" to get } \theta = 1.1528$ Store this value to obtain $r_1(1.1528) = 4.3766$. Polar coordinates: $r_1 = 4.3766$ and $\theta = 1.1528$ For rectangular coordinates: $x_1 = r_1 \cos \theta \rightarrow x_1(1.1528) = 1.776$ $y_1 = r_1 \sin \theta \rightarrow y_1(1.1528) = 4$
- 6) Write in terms of *x* and *y* an equation for the line tangent to the graph of the curve r_1 at the point where $\theta = \frac{\pi}{3}$.

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{d(r_1 \sin \theta)}{d\theta}}{\frac{d(r_1 \cos \theta)}{d\theta}} = \frac{4 \sin \theta \sin \theta + (6 - 4 \cos \theta) \cos \theta}{4 \sin \theta \cos \theta - (6 - 4 \cos \theta) \sin \theta}$$

At $\theta = \frac{\pi}{3}$ we have:
$$\frac{dy}{dx}\Big|_{\theta = \frac{\pi}{3}} = -\frac{5}{\sqrt{3}} \quad \text{and} \quad x_1\left(\frac{\pi}{3}\right) = 2 \quad \text{and} \quad y_1\left(\frac{\pi}{3}\right) = 2\sqrt{3}$$

Tangent line: $y - 2\sqrt{3} = -\frac{5}{\sqrt{3}}(x - 2)$

7) Recall that a particle moves along the curve $r_1 = 6 - 4 \cos \theta$ such that $\theta = -2t$. Find the position vector of the particle $\langle x(t), y(t) \rangle$ in terms of *t*. Use your calculator to find the velocity vector of the particle at t = 1.

Using $x_1 = r_1 \cos \theta$ and $y_1 = r_1 \sin \theta$ and $\theta = -2t$: position vector: $\langle (6 - 4\cos(-2t))\cos(-2t), (6 - 4\cos(-2t))\sin(-2t) \rangle$ Using a calculator, velocity vector at t = 1 is $\left| \frac{dx_1}{dt} \right|_{t=1}, \frac{dy_1}{dt} \right|_{t=1} \rangle = \langle -16.9659, -0.235 \rangle$