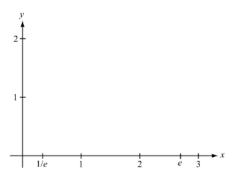
1969 AB3/BC3

Given $f(x) = \frac{1}{x} + \ln x$, defined only on the closed interval $\frac{1}{e} \le x \le e$.

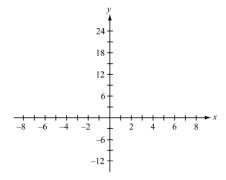
- (a) Showing your reasoning, determine the value of x at which f has its
 - (i) absolute maximum,
 - (ii) absolute minimum.
- (b) For what values of x is the curve concave up?
- (c) On the coordinate axes provided, sketch the graph of f over the interval $\frac{1}{e} \le x \le e$.
- (d) Given that the mean value (average ordinate) of f over the interval is $\frac{2}{e-1}$, state in words a geometrical interpretation of this number relative to the graph.



1970 AB3/BC2

Consider the function f given by $f(x) = x^{\frac{4}{3}} + 4x^{\frac{1}{3}}$ on the interval $-8 \le x \le 8$

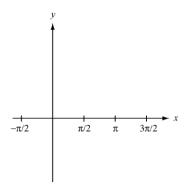
- (a) Find the coordinates of all points at which the tangent to the curve is a horizontal line.
- (b) Find the coordinates of all points at which the tangent to the curve is a vertical line.
- (c) Find the coordinates of all points at which the absolute maximum and absolute minimum occur.
- (d) For what values of x is this function concave down?
- (e) On the axes provided, sketch the graph of the function on this interval.



1975 AB4/BC1

Given the function defined by $y = x + \sin x$ for all x such that $-\frac{\pi}{2} \le x \le \frac{3\pi}{2}$.

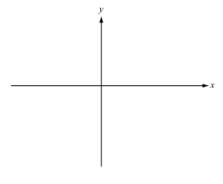
- (a) Find the coordinates of <u>all</u> maximum and minimum points on the given interval. Justify your answers.
- (b) Find the coordinates of <u>all</u> points of inflection on the given interval. Justify your answers.
- (c) On the axes provided, sketch the graph of the function.



1977 AB2

Consider the function f defined by $f(x) = (x^2 - 1)^3$ for all real numbers x.

- (a) For what values of x is the function increasing?
- (b) Find the x- and y-coordinates of the relative maximum and minimum points. Justify your answer.
- (c) For what values of x is the graph of f concave upward?
- (d) Using the information found in parts (a), (b), and (c), sketch the graph of f on the axes provided.



Answers

1969 AB3/BC3 Solution

(a)
$$f'(x) = -\frac{1}{x^2} + \frac{1}{x} = \frac{x-1}{x^2}$$

$$f'(x) = 0$$
 at $x = 1$.

The three candidates are f(1) = 1

$$f\left(\frac{1}{e}\right) = e - 1$$

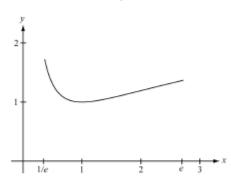
$$f(e) = \frac{1}{e} + 1 = \frac{e+1}{e}$$

Therefore the absolute maximum is at $x = \frac{1}{\rho}$ and the absolute minimum is at x = 1.

(b)
$$f''(x) = \frac{2}{x^3} - \frac{1}{x^2} = \frac{2-x}{x^3} > 0$$
 for $\frac{1}{e} \le x < 2$

Therefore the curve is concave up for $\frac{1}{e} \le x < 2$.

(c)



(d) $\frac{2}{e-1}$ is the height of a rectangle of width $\left(e-\frac{1}{e}\right)$ and having the same area as that enclosed by the graph of y=f(x), the vertical lines $x-\frac{1}{e}$ and x=e, and the x-axis.

1970 AB3/BC2 Solution

(a)
$$f(x) = x^{4/3} + 4x^{1/3} = x^{1/3}(x+4)$$

$$f'(x) = \frac{4}{3}x^{1/3} + \frac{4}{3}x^{-2/3} = \frac{4}{3}\left(\frac{x+1}{x^{2/3}}\right)$$

f'(x) = 0 at x = -1. There is a horizontal tangent at (-1, -3)

- (b) There is a vertical tangent at (0,0).
- (c) The absolute maximum and absolute minimum must occur at a critical point or an endpoint. The candidates are

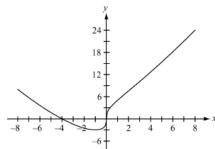
$$(-8,8)$$
, $(-1,-3)$, $(0,0)$, and $(8,24)$

So the absolute maximum is at (8,24) and the absolute minimum is at (-1,-3).

(d)
$$f''(x) = \frac{4}{9}x^{-2/3} - \frac{8}{9}x^{-5/3} = \frac{4}{9}\left(\frac{x-2}{x^{5/3}}\right)$$

The graph is concave down for 0 < x < 2.

(e)



1975 AB4/BC1 Solution

(a) y'=1+cosx

Therefore $x = \pi$ is the only critical point on the interval $-\frac{\pi}{2} \le x \le \frac{3\pi}{2}$. But $y' \ge 0$ on this interval, hence π is not an extreme point. The minimum and maximum must occur at the endpoints.

At
$$x = -\frac{\pi}{2}$$
, $y = -\frac{\pi}{2} + \sin\left(-\frac{\pi}{2}\right) = -\frac{\pi}{2} - 1$

At
$$x = \frac{3\pi}{2}$$
, $y = \frac{3\pi}{2} + \sin\left(\frac{3\pi}{2}\right) = \frac{3\pi}{2} - 1$

The absolute minimum is at $\left(-\frac{\pi}{2}, -\frac{\pi}{2} - 1\right)$.

The absolute maximum is at $\left(\frac{3\pi}{2}, \frac{3\pi}{2} - 1\right)$.

$$y'' = 0$$
 at $x = 0$ and $x = \pi$.

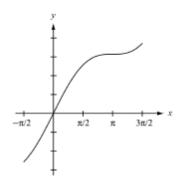
$$y^{*} > 0$$
 for $-\frac{\pi}{2} < x < 0$

$$y^* < 0$$
 for $0 < x < \pi$

$$y^{*} > 0$$
 for $\pi < x < \frac{3\pi}{2}$

Therefore (0,0) and (π,π) are inflection points.

(c)



1977 AB2 Solution

(a)
$$f(x) = (x^2 - 1)^3$$

 $f'(x) = 6x(x^2 - 1)^2$
 $x < 0 \Rightarrow f'(x) < 0$
 $x > 0 \Rightarrow f'(x) > 0$

Therefore the function is increasing for x > 0.

(b)
$$f'(x) = 6x(x^2 - 1)^2 = 0$$

 $x = 0, x = 1, x = -1$

Since f is decreasing for x < 0 and increasing for x > 0, the only relative minimum point is at x = 0, y = -1 and there are no relative maximum points.

(c)
$$f''(x) = 6(x^2 - 1)^2 + 24x^2(x^2 - 1) = 6(x^2 - 1)(5x^2 - 1)$$

 $f''(x) = 0$ for $x = 1$, $x = -1$, $x = \sqrt{\frac{1}{5}}$, $x = -\sqrt{\frac{1}{5}}$.

The graph of f is concave up when $6(x^2-1)(5x^2-1)>0$. This happens for all x in $(-\infty,-1)\cup\left(-\sqrt{\frac{1}{5}},\sqrt{\frac{1}{5}}\right)\cup(1,\infty)$

