What makes a function continuous?

Sammit-Key

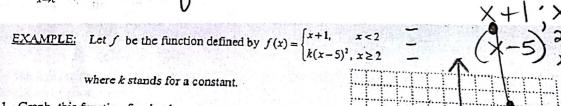
The Meaning of Continuity:

Consider the function f defined below:

$$f(x) = \begin{cases} x^2 - 1, & -1 \le x < 0 \\ 2x, & 0 \le x < 1 \\ 1, & x = 1 \\ -2x + 4, & 1 < x < 2 \\ 0, & 2 < x \le 3 \end{cases}$$

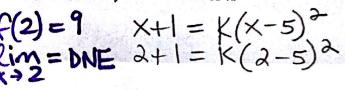
$$\frac{1}{2(x - 4)} + 0.5, \quad 3 < x \le 5, \ x \ne 4$$

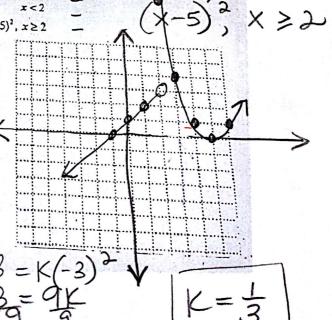
1. Over the interval [-1, 5], where is the function f discontinuous?


$$a + x = 0, 1, 2, 4$$

2. Complete the table for each value of x = c given.

X = c	f(c)	$\lim_{x\to c^-} f(x)$	$\lim_{x\to c^+} f(x)$	$\lim_{x\to c} f(x)$	Does $f(c) = \lim_{x \to c} f(x)$	Is $f(x)$ continuous at
		x→c	x → c	1 1 - 1 1	1-76	x = c?
0	0	- 1	0	DNE	No	No
1		2	2	2	No	No
2	DNE	0	0	O	No	No
3	0	0	Ö	Ø	Yes.	Yes
4	DNE	-00	00	DNE	DNE NA	No


Using the table above determine the three conditions that must exist in order for a function to be continuous:


- a) The $\lim f(x)$ exists
- b) f(c) is defined
- c) $\lim_{x \to c} f(x)$ equals f(c)

- 1. Graph this function for k=1.
- 2. Use the definition of continuity to explain formally what must be true in order for f to be continuous at x=2.

 The limit has to exist $\lim_{x \to a} = f(a)$
- 3. Find the value of k that makes f continuous at x = 2. Then sketch f for this value of k

