CALCULUS BC

WORKSHEET ON SERIES

Work the following on notebook paper. Use your calculator only on 10 (b).

1. Which of the following is a term in the Taylor series about $x=0$ for the function $f(x)=\cos (2 x)$?
(A) $-\frac{1}{2} x^{2}$
(B) $-\frac{4}{3} x^{3}$
(C) $\frac{2}{3} x^{4}$
(D) $\frac{1}{60} x^{5}$
(E) $\frac{4}{45} x^{6}$
2. Find the values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n(-3)^{n}}$ converges.
(A) $x=2$
(B) $-1 \leq x<5$
(C) $-1<x \leq 5$
(D) $-1<x<5$
(E) All real numbers
3. Let $f(x)=\sum_{n=1}^{\infty}(\cos x)^{3 n}$. Evaluate $f\left(\frac{2 \pi}{3}\right)$.
(A) $-\frac{1}{7}$
(B) $-\frac{1}{9}$
(C) $\frac{1}{7}$
(D) $\frac{8}{9}$
(E) The series diverges.
4. Find the sum of the geometric series $\frac{9}{8}-\frac{3}{4}+\frac{1}{2}-\frac{1}{3}+\ldots$
(A) $\frac{3}{5}$
(B) $\frac{5}{8}$
(C) $\frac{13}{24}$
(D) $\frac{27}{8}$
(E) $\frac{27}{40}$
5. The series $x+x^{3}+\frac{x^{5}}{2!}+\frac{x^{7}}{3!}+\ldots+\frac{x^{2 n+1}}{n!}+\ldots$ is the Maclaurin series for
(A) $x \ln \left(1+x^{2}\right)$
(B) $x \ln \left(1-x^{2}\right)$
(C) $e^{x^{2}}$
(D) $x e^{x^{2}}$
(E) $x^{2} e^{x^{2}}$
6. The coefficient of x^{3} in the Taylor series for $e^{2 x}$ at $x=0$ is
(A) $\frac{1}{6}$
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) $\frac{4}{3}$
(E) $\frac{8}{3}$
7. The Taylor polynomial of order 3 at $x=0$ for $f(x)=\sqrt{1+x}$ is
(A) $1+\frac{x}{2}-\frac{x^{2}}{4}+\frac{3 x^{3}}{8}$
(B) $1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}$
(C) $1-\frac{x}{2}+\frac{x^{2}}{8}-\frac{x^{3}}{16}$
(D) $1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{8}$
(E) $1-\frac{x}{2}+\frac{x^{2}}{4}-\frac{3 x^{3}}{8}$
8. The function f has a Taylor series about $x=2$ that converges to $f(x)$ for all x in the interval of convergence. The nth derivative of f at $x=2$ is given by $f^{(n)}(2)=\frac{(n+1)!}{3^{n}}$ for $n \geq 1$, and $f(2)=1$.
(a) Write the first four terms and the general term of the Taylor series for f about $x=2$.
(b) Find the radius of convergence for the Taylor series for f about $x=2$. Show the work that leads to your answer.
(c) Let g be a function satisfying $g(2)=3$ and $g^{\prime}(x)=f(x)$ for all x. Write the first four terms and the general term of the Taylor series for g about $x=2$.
(d) Does the Taylor series for g as defined in part (c) converge at $x=-2$? Give a reason for your answer.
9. The function f is defined by the power series
$f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\ldots$
for all real numbers x.
(a) Find $f^{\prime}(0)$ and $f^{\prime \prime}(0)$. Determine whether f has a local maximum, a local minimum, or neither at $x=0$. Give a reason for your answer.
(b) Show that the second-degree Taylor polynomial for f about $x=0$ approximates $f(1)$ with error less than $\frac{1}{100}$.
10. Let f be a function that has derivatives of all orders on the interval $(-1,1)$. Assume that $f(0)=6, f^{\prime}(0)=8, f^{\prime \prime}(0)=30, f^{\prime \prime \prime}(0)=48$, and $\left|f^{(n)}(x)\right| \leq 75$ for all x in $(0,1)$.
(a) Write a third-degree Taylor polynomial for f about $x=0$.
(b) Use your answer to (a) to estimate the value of $f(0.2)$. What is the maximum possible error in making this estimate? Justify your answer.
8)

(a) $f(2)=1 ; f^{\prime}(2)=\frac{2!}{3} ; f^{\prime \prime}(2)=\frac{3!}{3^{2}} ; f^{\prime \prime \prime}(2)=\frac{4!}{3^{3}}$

$$
\begin{gathered}
f(x)=1+\frac{2}{3}(x-2)+\frac{3!}{2!3^{2}}(x-2)^{2}+\frac{4!}{3!3^{3}}(x-2)^{3}+ \\
+\cdots+\frac{(n+1)!}{n!3^{n}}(x-2)^{n}+\cdots \\
=1+\frac{2}{3}(x-2)+\frac{3}{3^{2}}(x-2)^{2}+\frac{4}{3^{3}}(x-2)^{3}+ \\
+\cdots+\frac{n+1}{3^{n}}(x-2)^{n}+\cdots
\end{gathered}
$$

(b) $\lim _{n \rightarrow \infty}\left|\frac{\frac{n+2}{3^{n+1}}(x-2)^{n+1}}{\frac{n+1}{3^{n}}(x-2)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n+2}{n+1} \cdot \frac{1}{3}|x-2|$
$=\frac{1}{3}|x-2|<1$ when $|x-2|<3$
The radius of convergence is 3 .
(c) $g(2)=3 ; g^{\prime}(2)=f(2) ; g^{\prime \prime}(2)=f^{\prime}(2) ; g^{\prime \prime \prime}(2)=f^{\prime \prime}(2)$ $g(x)=3+(x-2)+\frac{1}{3}(x-2)^{2}+\frac{1}{3^{2}}(x-2)^{3}+$ $+\cdots+\frac{1}{3^{n}}(x-2)^{n+1}+\cdots$
(d) No, the Taylor series does not converge at $x=-2$ because the geometric series only converges on the interval $|x-2|<3$.

1 : coefficients $\frac{f^{(n)}(2)}{n!}$ in first four terms
$3:$
1 : powers of $(x-2)$ in first four terms 1: general term

1 : sets up ratio
1 : limit
$3:$
1: applies ratio test to conclude radius of convergence is 3
$2:\left\{\begin{array}{l}1: \text { first four terms } \\ 1: \text { general term }\end{array}\right.$

1 : answer with reason

Answers to Worksheet on Series

1. C
2. C
3. B
4. E
5. D
6. D
7. B
8. (a) $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=-\frac{1}{3}$

Since $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=-\frac{1}{3}, f$ has a local maximum at $x=0$ by the Second Derivative Test.
(b) $f(1)=1-\frac{1}{3!}+\frac{1}{5!}-\ldots$

This is an alternating series whose terms are decreasing in size so the error involved in approximating $f(1)$ by this polynomial is less in magnitude than the first truncated term.
Therefore \mid Error $\left\lvert\,<\frac{1}{5!}=\frac{1}{120}<\frac{1}{100}\right.$ by the Alternating Series Remainder.
10. (a) $6+8 x+15 x^{2}+8 x^{3}$
(b) $f(0.2) \approx 8.264$

By the Lagrange Error Bound, $\left|R_{3}(x)\right|=\left|\frac{f^{(4)}(z) x^{4}}{4!}\right| \leq \frac{75 x^{4}}{4!}$
so \mid Error $\left|=\left|R_{3}(0.2)\right| \leq \frac{75(0.2)^{4}}{4!}=0.005\right.$

