Applications of Derivatives Review

Name: <u>LU</u>

5	Problems from Textbook
Page #	Problems
160	105, 107
242	5, 11, 15, 17, 19, 23, 24,25

SAMPLE AP QUESTIONS

1)	The slope of the curve $y^3 - xy^2 = 4$ at the point where y = 2 is
•	The point where v = xv = 4 at the point where v = x is

a) -2

c) –

e) 2

b) 1/2

(d) ½

2) The slope of the curve $y^2 - xy - 3x = 1$ at the point (0, -1) is

a) -1

c)

e) -3

b) -2

d)

3) The equation of the tangent to the curve $y = x \sin x$ at the point $(\frac{\pi}{2}, \frac{\pi}{2})$ is

a) $y = x - \pi$

c) $y = \pi - x$

(e) y = x

b) $y = \pi/2$

- d) $y = x + \pi/2$
- 4) The tangent to the curve of $y = xe^{-x}$ is horizontal when x is equal to
 - a) 0

c) -1

e) None of these

(b) 1

- d) 1/e
- 5) The minimum value of the slope of the curve $y = x^5 + x^3 2x$ is
 - (a) 0 b) 2

c) 6 d) -2

- e) None of these
- 6) The equation of the tangent to the hyperbola $x^2 y^2 = 12$ at the point (4, 2) on the curve
 - a) x 2y + 6 = 0
 - b) y = 2x
 - (c) y = 2x 6
 - d) $y = \frac{x}{2}$
 - e) x + 2y = 6

7) The function $f(x) = x^4 - 4x^2$ has

- a) One relative minimum and two relative maximum
- b) One relative minimum and one relative maximum
- c) Two relative maxima and no relative minimum
- d) Tow relative minima and no relative maximum
- Two relative minima and one relative maximum
- 8) The number of inflection points of the curve in Question 7 is
 - a) 0b) 1

(c) 2

e) .

9) The maximum value of the function $y = -4\sqrt{2-x}$ is

(a)

c) 2

e) None of these

b) -4

- d), -2
- 10) The total number of maximum and minimum points of the function whose derivative, for all x, is given by $f'(x) = x(x-3)^2(x+1)^4$ is
 - 0 (6

c) 2

e) None of these

 $\binom{b}{1}$

d) 3

	,		The second			the goal of the contract of th
surface is falling at	t the rate of ½ ft/hr. Th	has depth e rate, in	n 20 ft and r cubic feet p	adius of the top 1 er hour, at which	the water	er is leaking out so that the is leaving the reservoir
when the water is	8 ft deep is	١			e)	1/(8π)
a) 4π (b) 8π		c) 16π			-,	- Control of the second
		d) 1/(4	ιπ)			
12) A local minimum v	alue of the function y	$=\frac{e}{x}$ is				rie orani nate papes arri - gr
a) 1/e		c) -1			e)	U
b) 1	i	(d)) e			21	7 t-
13) The point of the cu	rve $y = \sqrt{2x+1}$ at where	nich the n	ormal is pai	rallel to the line 3	y = -3x +	6 IS
(a) (4, 3)		c) (1, v	/3)		e)	$(2,\sqrt{5})$
b) (0, 1)		d) (4, -	3)			
14) The number of vert	tical tangents to the gra	aph of y^2	$=x-x^3$ is	5. 38 · 6 ·	Fluid type	geredit discup, e. gi
a) 4		c) 2			e)	0
(b)) 3		d) 1				
15) $\lim_{h\to 0} \frac{(2+5)^5-2^5}{h}$						
a) 0		c) 32			e)	160
b) 1		d) 80			•	
16) How many critical p	sainta dans tha functio		$ r^3-2r $	nave over its enti	re domain	? to setav mursyn + 15 2
	omis does the function		x 2x	3 3 4	e)	Infinitely many
a) 2		c) 4			•	
b) 3 17) The function g is con	ntinuous on the interv	u) 3	nd differen	tiable (-1, 2), If	g(-1) =2 an	d g(2)=-4, which of the
	ts in NOT necessarily tr		ina anteren			0 = 0 + 48 11 12
	lue c on (-1, 2) such th					
	ue c on (-1, 2) such tha		1			
	ue c on (-1, 2) such tha			*		
	ue c on (-1, 2) such tha					
				[-1.2]		
e) There exist a val	ue c on [1, 2] such tha	L I(C) 21(A)	TOT BIT X OF	(L ±, ±]		maiding of the manner of the
_	- B	1-1	1 500			
X	f g f'	g' -5/2				
$\frac{1}{2}$	3 4 2/3 4 2 4/3	-3/2				
2	4 2 4/3 8 1 8/3	1/2				
18) If f(x) and g(x) are di	fferentiable function	with value	」 es as given	in the chart abo	ve. and k	$(x) = f(g(x^2))$, what is $k'(2)$?
	THE FETTIABLE TUTIES (c) 4/3				None of these
a) 1/3		d) 16/3			-,	Hone of these
b) 2/3			-f f(-i) -	-x2llal	** *b* **	ant line? (Calaulatan)
19) For what value of c or				e" – x- paralle		
a) -0.248		c) 0.500			e)	0.718
(b) 0.351		d) 0.693				
20) A 26-foot ladder leans	against a building so	that its f	oot moves	away from the	building a	t the rate of 3 ft/sec. When
the foot of the ladder	is 10 feet from the bu	ilding, th	e top is m	oving down at tl	ne rate of	r feet per second, where r is
a) 46/3		d) 5/2				
b) 3/4		e) 4/5				
(c) 5/4		-, .,-	21			
5)4			100 10 10			

Apps of Der Review:

1)
$$y^{3} - xy^{2} = 4$$

1) $3y^{2} \frac{dy}{dx} - (x \cdot 2y \frac{dy}{dx} + y^{2} \cdot 1) = 0$

$$\frac{dy}{dx} = \frac{3y^{2} - 2xy}{2xy} = \frac{3^{2} - x(2)^{2} = 4}{8 - 4x = 4}$$

$$\frac{dy}{dx} = \frac{4}{8} = \boxed{\frac{1}{2}}$$

2) $y^{2} - xy - 3x = 1$

(0, -1)

A $2y \frac{dy}{dx} - (x \frac{dy}{dx} + y(1)) - 3 = 0$

$$\frac{dy}{dx} = \frac{2y - x}{2y - x}$$

$$\frac{dy}{dx} = \frac{1 + 3}{2y - x}$$

$$\frac{dy}{dx} = \frac{-1 + 3}{2(-1) - 0} = \frac{2}{-2} = \boxed{1}$$

6)
$$x^{2}-y^{3}=12$$
 (4,2)
C $2x-2y\frac{dy}{dx}=0$ $y-2=2(x-4)$
 $-2y\frac{dy}{dx}=-2x$ $y=2x-6$
 $-2x\frac{dy}{dx}=-2x$ $y=2x-6$
 $-2x\frac{dy}{dx}=-2x$ $y=2x-6$
 $-2x\frac{dy}{dx}=-2x$ $y=2x-6$
 $-2x\frac{dy}{dx}=-2x$ $y=2x-6$
 $-2x\frac{dy}{d$

9)
$$y = -4(2-x)^{\frac{1}{2}}$$

A $y' = -2(2-x)^{-\frac{1}{2}}$
 $y = 0$
 $y = 0$

Scanned by CamScanner

13)
$$y = (2x+1)^{1/2}$$

A $y' = \frac{1}{2}(2x+1)^{-1/2}$. $1 = \frac{1}{\sqrt{2x+1}} = \frac{1}{3}$
 $y = \sqrt{9} = 3$ $3 = \sqrt{2x+1}$
 $y = \sqrt{9} = 3$ $3 = \sqrt{2x+1}$
 $y = \sqrt{4}$, $y = \sqrt{4}$

(4,3) $y = \sqrt{4}$

B $y = \sqrt{4}$
 $y = \sqrt{3}$
 $y = \sqrt{4}$
 $y = \sqrt{$

$$\frac{17)}{B} \frac{-4-2}{2-(-1)} = \frac{-6}{3} = -2$$

18)
$$f(g(x^2)) = K(x)$$

C
$$K'(x) = f'(g(x^{2})) \cdot g'(x^{2}) \cdot 2x$$

 $f'(g(4)) \cdot g'(4) \cdot 4$
 $f'(1) \cdot \frac{1}{2} \cdot \frac{4}{1} = \frac{4}{3}$

19)
$$y = e^{x} - x^{x}$$

B $y' = e^{x} - 2x = 0$
 $f(i) - f(i)$
 $f(i) - f(i)$

$$y = e^{x} - x^{2}$$
 $y' = e^{x} - 2x$
 $y' = e^{$

$$\chi = .351$$

20)
$$244$$
 $\frac{26}{3t} = 3.44/\text{sec}$
 $x = 10$
 $\frac{dx}{dt} = ?$

$$x^{2}+y^{2}=z^{2}$$

 $2x^{2}+2y^{2}=0$
 $2(10)(3)+2(24)(4)=0$
 $4=-5+1/s$

$$|05| \times \sin y = y \cos x$$

$$\times \cos y \frac{dy}{dx} + \sin y = y(-\sin x) + \cos x \frac{dy}{dx}$$

$$(\times \cos y - \cos x) \frac{dy}{dx} = -y \sin x - \sin y$$

$$\frac{dy}{dx} = -\frac{y \sin x - \sin y}{x \cos y - \cos x}$$

$$|07| \times^{\lambda} + y^{\lambda} = \lambda 0 \quad (\lambda, +)$$

$$2x + \lambda y \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{\lambda}{\lambda} = -\frac{\lambda}{y}$$

$$y - 4 = -\frac{\lambda}{\lambda} (x - \lambda) \quad xy - 8 = -x + \lambda$$

$$y - 4 = -\frac{\lambda}{\lambda} (x - \lambda) \quad xy - 8 = -x + \lambda$$

$$y - 4 = -\frac{\lambda}{\lambda} (x - \lambda) \quad xy - 8 = -x + \lambda$$

$$y - 4 = -\frac{\lambda}{\lambda} (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad yy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad yy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad yy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y - 4 = \lambda (x - \lambda) \quad xy - 4 = \lambda (x - \lambda)$$

$$y -$$

15)
$$f(x) = (x-1)^{2}(x-3)$$

 $f(x) = (x^{2}-2x+1)(x-3)$
 $f(x) = x^{3}-3x^{2}-2x^{2}+6x+x-3$
 $f(x) = x^{3}-5x^{2}+7x-3$
 $f'(x) = 3x^{2}-10x+7=0$
 $(3x-7)(x-1)=0$
 $x=\frac{7}{3}, 1$
 $x=\frac{7}{3}, 1$

17)
$$h(x) = \sqrt{x}(x-3), x > 0$$

 $h(x) = x^{1/2}(x-3) = x^{3/4} - 3x^{1/2}$
 $h'(x) = \frac{3}{2}x^{1/2} - \frac{3}{2}x^{-1/2}$
 $\frac{\sqrt{x}}{\sqrt{x}} \cdot \frac{3\sqrt{x}}{\sqrt{x}} = 0$

$$\frac{3x}{2\sqrt{x}} - \frac{3}{2\sqrt{x}} = 0$$
$$3x - 3 = 0$$

19)
$$h(t) = \frac{1}{4}t^{4} - 8t$$

 $h'(t) = t^{3} - 8 = 0$
 $t^{3} = 8$
 $t = 2$

$$\langle -++ \rangle$$

rel min: (2,-12)

23)
$$f(x) = x + \cos x$$
 [0, 2T]
 $f'(x) = 1 - \sin x$
 $f''(x) = -\cos x = 0$
 $\cos x = 0$
 $x = \frac{\pi}{2}, \frac{3\pi}{2}$
 $\cot (\frac{\pi}{2}, \frac{\pi}{2}), (\frac{3\pi}{2}, \frac{3\pi}{2})$
 $\cot (\frac{\pi}{2}, \frac{\pi}{2}), (\frac{3\pi}{2}, \frac{3\pi}{2})$
 $\cot (\frac{\pi}{2}, \frac{\pi}{2}), (\frac{3\pi}{2}, \frac{3\pi}{2})$
 $\cot (\frac{\pi}{2}, \frac{3\pi}{2}), (\frac{3\pi}{2}, \frac{3\pi}{2})$
 $\cot (\frac{\pi}{2}, \frac{3\pi}{2}), (\frac{3\pi}{2}, \frac{3\pi}{2})$
 $\cot (\frac{\pi}{2}, \frac{3\pi}{2}), (\frac{3\pi}{2}, \frac{3\pi}{2})$
 $f(x) = (x^2 + 4x + 4)(x - 4)$
 $f(x) = (x^2 + 4x + 4)(x - 4)$
 $f(x) = (x^2 + 4x + 4)(x - 4)$
 $f(x) = (x^3 - 4x^4 + 4x^4 - 16x + 4x - 16)$
 $f(x) = (x^3 - 14x - 16)$
 $f'(x) = (x^3 - 14x - 16)$
 $f'(x) = (x^3 - 14x - 16)$
 $f''(x) = (x^3$

$$g'(x) = 4x - 8x^{3} = 0 - 2x^{2} = -1$$

$$g''(x) = 4x - 8x^{3} = 0 - 2x^{2} = -1$$

$$4x(1 - 2x^{2}) = 0 - x^{2} = \frac{1}{2}$$

$$y''(x) = 4x - 8x^{3} = 0 - 2x^{2} = -1$$

$$4x(1 - 2x^{2}) = 0 - 2x^{2} = -1$$

$$x' = \sqrt{2}$$

$$x' = \sqrt{2}$$