## plications of Derivatives Review

Name:

|        | Problems from Textbook       |  |
|--------|------------------------------|--|
| Page # | Problems                     |  |
| 160    | 105, 107                     |  |
| 242    | 5, 11, 15, 17, 19, 23, 24,25 |  |

SAMPLE AP QUESTIONS

| 1) | The slope of the curve $y^3 - xy^2 = 4$ at the point where y = 2 is |
|----|---------------------------------------------------------------------|
|    | 1)                                                                  |

e) 2

b) 1/4

2) The slope of the curve  $y^2 - xy - 3x = 1$  at the point (0, -1) is

3) The equation of the tangent to the curve 
$$y = x \sin x$$
 at the point  $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$  is

a)  $y = x - \pi$ 

c)  $y = \pi - x$ 

b)  $y = \pi/2$ 

d)  $y = x + \pi/2$ 

4) The tangent to the curve of  $y = xe^{-x}$  is horizontal when x is equal to

a) 0

- c) -1
- b) 1 5) The minimum value of the slope of the curve  $y = x^5 + x^3 - 2x$  is
- d) 1/e

e) None of these

((a)) 0

6) The equation of the tangent to the hyperbola  $x^2 - y^2 = 12$  at the point (4, 2) on the curve

- a) x 2y + 6 = 0
- b) y = 2x
- y = 2x 6
- e) x + 2y = 6

7) The function  $f(x) = x^4 - 4x^2$  has

- a) One relative minimum and two relative maximum
  - b) One relative minimum and one relative maximum
  - c) Two relative maxima and no relative minimum
  - d) Tow relative minima and no relative maximum
- (a) Two relative minima and one relative maximum 8) The number of inflection points of the curve in Question 7 is

a) 0

b) 1

- d) 3
- 9) The maximum value of the function  $y = -4\sqrt{2-x}$  is
  - a)) 0

c) 2

e) None of these

d) -2

10) The total number of maximum and minimum points of the function whose derivative, for all x, is given by f'(x) =

- $x(x-3)^2(x+1)^4$  is

c) 2

e) None of these

## Applications of Derivatives Review

Name:

- 11) A circular conical reservoir, vertex down, has depth 20 ft and radius of the top 10 ft. Water is leaking out so that the surface is falling at the rate of  $\frac{1}{2}$  ft/hr. The rate, in cubic feet per hour, at which the water is leaving the reservoir when the water is 8 ft deep is
  - a) 4π

c) 16n

e)  $1/(8\pi)$ 

b)) 8π

- d)  $1/(4\pi)$
- 12) A local minimum value of the function  $y = \frac{e^x}{100}$  is
  - a) 1/e

e) 0

b) 1

- 13) The point of the curve  $y = \sqrt{2x+1}$  at which the normal is parallel to the line y = -3x+6 is
  - (a) (4, 3)

c)  $(1, \sqrt{3})$ 

e)  $(2, \sqrt{5})$ 

b) (0, 1)

- d) (4, -3)
- 14) The number of vertical tangents to the graph of  $y^2 = x x^3$  is

e) 0

b)

- 15) lim<sub>h</sub>

e) 160

a) b) 1

- 16) How many critical points does the function  $f(x) = |x^3 2x|$  have over its entire domain?

e) Infinitely many

b)~3

- (d) 5
- 17) The function g is continuous on the interval [-1, 2] and differentiable (-1, 2). If g(-1) = 2 and g(2) = -4, which of the following statements in NOT necessarily true?
  - a) There exist a value c on (-1, 2) such that f(c) = 0
  - (b)) There exist a value c on (-1, 2) such that f'(c) = 0
  - c) There exist a value c on (-1, 2) such that f(c) =-3
  - d) There exist a value c on (-1, 2) such that f'(c) =-2
  - e) There exist a value c on [1, 2] such that f(c) ≥f(x) for all x on [-1, 2]

| х | f | g | f   | g'   |
|---|---|---|-----|------|
| 1 | 3 | 4 | 2/3 | -5/2 |
| 2 | 4 | 2 | 4/3 | -3/2 |
| 4 | 8 | 1 | 8/3 | 1/2  |

- 18) If f(x) and g(x) are differentiable function with values as given in the chart above, and  $k(x) = f(g(x^2))$ , what is k'(2)?
  - a) 1/3

(c) )4/3

e) None of these

b) 2/3

- d) 16/3
- 19) For what value of c on [0, 1] is the tangent to graph of  $f(x)=e^x-x^2$  parallel to the secant line? (Calculator)
  - a) -0.248

c) 0.500

e) 0.718

- d) 0.693
- b) 0.351
- 20) A 26-foot ladder leans against a building so that its foot moves away from the building at the rate of 3 ft/sec. When the foot of the ladder is 10 feet from the building, the top is moving down at the rate of r feet per second, where r is
  - a) 46/3

d) 5/2

e) 4/5

## Textbook Problems

$$x \cos y \frac{dy}{dx} + \sin y = y(-\sin x) + \cos x \frac{dy}{dx}$$

$$(x\cos y - \cos x) \frac{dy}{dx} = -y\sin x - \sin y$$

$$\frac{dy}{dx} = -y\sin x - \sin y$$

$$x\cos y - \cos x$$

$$(07) \times^{\lambda} + y^{\lambda} = 20 \quad (a,4)$$

$$\frac{dy}{dx} = -\frac{dx}{dy} = 0$$

T: 
$$-\frac{1}{4} = \frac{1}{2}$$
  $(y-4) = \frac{1}{4}x+1$   
 $y-4 = -\frac{1}{4}(x-2)$   $\frac{1}{4}x+2y-10=0$   
N:  $\frac{1}{4}x+2y-10=0$   
 $\frac{1}{4}x+2y-10=0$   
 $\frac{1}{4}x+2y-10=0$   
 $\frac{1}{4}x+2y-10=0$   
 $\frac{1}{4}x+2y-10=0$   
 $\frac{1}{4}x+2y-10=0$   
 $\frac{1}{4}x+2y-10=0$   
 $\frac{1}{4}x+2y-10=0$   
 $\frac{1}{4}x+2y-10=0$ 

5) 
$$f(x) = (x-a)(x^a+6x+9)$$
  
 $f(x) = x^3+6x^a+9x-3x-18$   
 $f(x) = (x-a)(x^a+6x+9)$ 

$$f'(x) = 3x^{2} + 8x - 3 = 0$$
  
 $(3x - 1)(x + 3) = 0$   
 $(3x - 1)(x + 3) = 0$ 

$$f(x) = 1 + \sin x = 1$$
  
 $\sin x = 0$   
 $x = 0$ 

pps of Der Review:

1) 
$$y^{3} - xy^{2} = 4$$

1)  $3y^{2} \frac{dy}{dx} - (x \cdot 2y \frac{dy}{dx} + y^{2} \cdot 1) = 0$ 

1)  $\frac{dy}{dx} = \frac{y^{2}}{3y^{2} - 2xy} = \frac{x^{3} - x(2)^{2} = 4}{8 - 4x = 4}$ 

1)  $\frac{dy}{dx} = \frac{4}{12 - 2(1)(2)} = \frac{4}{8} = \frac{1}{2}$ 

2)  $\frac{dy}{dx} - (x \frac{dy}{dx} + y(1)) - 3 = 0$ 

1)  $\frac{dy}{dx} = \frac{4}{4} = \frac{1}{4}$ 

2)  $\frac{dy}{dx} - (x \frac{dy}{dx} + y(1)) - 3 = 0$ 

2)  $\frac{dy}{dx} = \frac{4}{4} = \frac{1}{4}$ 

2)  $\frac{dy}{dx} = \frac{4}{4} = \frac{4}{4}$ 

2)  $\frac{dy}{dx} = \frac{4}{4}$ 

3)  $\frac{dy}{dx} = \frac{4}{4}$ 

4)  $\frac{dy}{dx} = \frac{4}{4}$ 

2)  $\frac{dy}{dx} = \frac{4}{4}$ 

3)  $\frac{dy}{dx} = \frac{4}{4}$ 

4)  $\frac{dy}{dx} = \frac{4}{4}$ 

4)  $\frac{dy}{dx} = \frac{4}{4}$ 

3)  $\frac{dy}{dx} = \frac{4}{4}$ 

4)  $\frac{dy}{dx} = \frac{4}{4}$ 

6)  $\frac{dy}{dx} = \frac{4}{4}$ 

7)  $\frac{dy}{dx} = \frac{4}{4}$ 

8)  $\frac{dy}{dx} = \frac{4}{4}$ 

8)  $\frac{dy$ 

(0,-2)

3) 
$$y = x \sin x$$
  $( \overline{z}, \overline{z} )$   
 $E y' = x (\cos x) + \sin x = 1$   
 $y'(\overline{z}) = \overline{z} \cos \overline{z} + \sin \overline{z}$   
 $y'(\overline{z}) = \overline{z} (0) + 1$   
 $y'(\overline{z}) = 1$   $y(\overline{z}) = \overline{z}$   
 $y' = x - \overline{z}$   $y(\overline{z}) = \overline{z}$   
4)  $y' = x \cdot (-e^{-x}) + e^{-x}(1)$   
 $y' = -xe^{-x} + e^{-x} = 0$   
 $e^{-x}(-x+1) = 0$   
 $x = 1$   
5)  $y = x^5 + x^3 - 2x$   
 $y'' = 5x^4 + 3x^2 - 2 = 0$   
 $y'' = 20x^3 + 6x = 0$   
 $2x(0x^2 + 3) = 0$   
 $x = 0$   
 $x = 0$   
 $x = 0$ 

$$x^{2}-y^{3}=1\lambda \quad (4,2)$$

$$\partial x - 2y \frac{dy}{dx} = 0 \qquad y-\lambda=2(x-4)$$

$$-2y \frac{dy}{dx} = -2x \qquad y=2x-6$$

$$\frac{dy}{dx} = \frac{x}{y} = \frac{4}{\lambda} = 2$$

$$7) f(x) = x^{4} - 4x^{2}$$

$$E \qquad f'(x) = 4x^{3} - 8x = 0$$

$$4x(x^{2}-\lambda) = 0$$

$$4x($$

9) 
$$y = -4(2-x)^{\frac{1}{2}}$$

A  $y' = -2(2-x)^{-\frac{1}{2}}$ 
 $= -2(2-x)^{-\frac{1}{2}$ 

$$y = (ax+1)^{1/2}$$

$$y' = \frac{1}{a}(ax+1)^{-1/2} \cdot 1 = \frac{1}{\sqrt{ax+1}} = \frac{1}{3}$$

$$y = \sqrt{9} = 3 \quad 3 = \sqrt{xx+1}$$

$$(4,3) \quad x = 4$$

17) 
$$\frac{-4-2}{2-(-1)} = \frac{-6}{3} = -2$$

Slope  $\neq 0$ 

18)  $f(g(x^{2})) = K(x)$ 
 $C(x^{2}) = f'(g(x^{2})) \cdot g'(x^{2}) \cdot 2x$ 
 $f'(g(t)) \cdot g'(t) \cdot 4$ 
 $f'(1) \cdot \frac{1}{2} \cdot 4$ 
 $f'(1) \cdot \frac{1}{2} \cdot 4$ 

By'=  $e^{x} - 2x$ 
 $f(1) - f(0) = \frac{1.718...-1}{1-0} = \frac{1}{1.718}$ 
 $e^{x} - 2x = .718$ 
 $e^{x} - 351$ 
 $e^{x} - 351$ 

#=-5 ft/s