Use the TI-89 to find the derivative of the following:

$$f(x) = 3x - 5 \quad 3$$

$$f(x) = x + 2$$

$$f(x) = 3 - 2x - \lambda$$

$$f(x) = -3x - 4 - 3$$

$$f(x) = \frac{1}{2}x \qquad \frac{1}{2}$$

$$f(x) = 4 - \frac{2}{3}x \qquad -\frac{2}{3}$$

- 1. All of the above functions are $\frac{1}{1}$ $\frac{1}{1}$ And their derivative is the $\frac{1}{1}$ of the line.
- ٧. Discovering the shortcut.

There is a shortcut to finding the derivative of a polynomial. Find the derivative of the following and see if you can discover the shortcut.

$$f(x) = x^2 \quad 2 \times$$

$$f(x) = x^{10} \quad |\bigcirc \searrow$$

$$f(x) = \sqrt{x} \quad \frac{1}{2} \times \sqrt{2} = \frac{1}{2 \times \sqrt{2}}$$

$$f(x) = x^4 + 4 \times^3$$

$$f(x) = \frac{1}{x^{\frac{2}{2}}} - 2 \times \frac{3}{4} - \frac{\lambda}{2} = \frac{3}{4} \times \frac{5}{4} \times \frac{5}{4} \times \frac{5}{4} \times \frac{1}{4} \times \frac{5}{4} \times \frac{1}{4} \times \frac{1$$

$$f(x) = \sqrt[4]{x^5} \times \sqrt[5]{4} \times \sqrt[4]{4}$$

1. Describe the shortcut

The constant multiple rule. - The derivative of a constant times a function is the constant times the VI. derivative. Find the derivative of the following. $-4 \cdot (-3x^{-4})$

$$f(x) = 3x^{2} \quad \begin{cases} 3 \cdot (\lambda \times) \\ 6 \times \end{cases}$$

$$f(x) = -4x^{-3}$$
 $|2 \times -4|$

$$f(x) = -x^{9}$$

$$-9 \times 8$$

The sum and difference rules: - The derivative of the sum of two functions is the sum of the derivatives of VII. the two functions. Find the derivatives of the following:

$$f(x) = x^2 - 3x$$

$$2 \times -3$$

$$f(x) = 4x^3 + 5x^2 + x - 1$$

$$|2 \times | + |0 \times + |$$

$$f(x) = 8x - \sqrt[3]{x}$$

$$8 - \sqrt[3]{3} \times \sqrt[3]{3}$$

Derivative of weird functions. Find the derivative of the following:

$$f(x) = \sin x$$

$$f(x) = \cos x$$

$$f(x) = e^x$$

$$f(x) = \ln x$$

$$\int_{X}^{(x)=1}$$