alculus AB	Name:
Optimization Day 2 #2	(x = 24 y = 8)
1) Find two positive numbers whose product is 192, ar	d the sum of the first plus three times the
second is a minimum. $\times u = 102$	x + 3u
xy = 192 $M = 192$ $M = 192$	x + 3y $x + 3(\frac{192}{x})$
y=192	$\times + 3(\overline{\times})$
Ann-i+ M M=x	$1+\frac{576}{5}\rightarrow 576$ ×
M' =	$\begin{array}{c} (1 + \frac{576}{x}) \rightarrow 576x^{-1} \\ (1 - 576) \times (-2) \\ (1 - \frac{576}{x^{2}}) = \frac{x^{2} - 576}{x^{2}} = 0 \end{array}$
0 = 1	$576 \times ^2 - 576 = 0$
D2#3	$-\frac{x^2}{x^2} = \frac{x^2}{x^2}$
2) A right triangle is formed in the 1st quadrant by the	2 (
Write the length of L of the hypotenuse as a function	$\times^2 -576 = 0$ $\times = \pm 24$
b) Find the vertices of the triangle such that its area is a minimum.	
$A = \frac{1}{2} \times y$ $M = \frac{2-y}{1-p} = \frac{2}{1-p}$	$\frac{-0}{}$ $(0,y)$
-, 1-0 1-	2 (1,2)
$A = \frac{1}{2} \times \left(\frac{-2x}{1-x} \right) \qquad 2-y = \frac{1}{1-x}$	2 3
1 2 2 -2	-2 × (× a)
$A = \frac{1}{1} = \frac{1}{1}$	2 2
1-X X-1	=x -~~
$\frac{1}{x} = \frac{(x-1)(2x) - (x^2)(1)}{(x-1)^2} - 1$ $y = \frac{1}{x}$	-1
$x = (x-1)^2 \qquad y = =$	$\frac{2}{-x} + 2\frac{(1-x)}{(1-x)}$
$\sqrt{A} = 2x^2 - 2x - x^2$	-x $(1-x)$
$\frac{yA}{dx} = \frac{2x^2 - 2x - x^4}{(x-1)^2} \qquad y = -\frac{1}{2}$	2+2-2x
	1-×
$\frac{\sqrt{4}}{2} = \frac{\sqrt{-4}}{\sqrt{3}} = 0$ $u = -6$	XX
dx $(x-1)$ $x^2-2x=0$ \int	- X
$\frac{dA}{dx} = \frac{x^2 - dx}{(x-1)^2} = 0$ $x = \frac{(x-1)^2}{(x-2)^2} = 0$ $x = 1, 0, 2$ $x = 0$ $x = -6$ $x = -6$ $x = -6$	
1,0,2 - 1 + dx	

Generated by CamScanner