	Latt Destruction (Critical	Intervals of	2 nd Derivative/	Concavity
Function	1 st Derivative/Critical #'s	Intervals of increasing/decreasing	Possible POI	Concavity
$x^3 - 3x + 1$				
		1		
		!		
	1	1		
2	-	,		-
$y = x^2 - x - 1$	1	1		
	1	!		
	1	1		
	1			
$y = 2x^4 - 4x^2 + 1$	-			
$y - 2\lambda - 3\lambda + 1$	'	1		
	1	- !	. 1	
	,		1	
	1		1	
$y = xe^x$				
	1		1	
	1		1	
	!		1	
$y = -2x^3 + 6x^2 - 3$			1	
			1	
			ş	
			1	
				
$y = \frac{x}{x - 1}$			1	
x-1			1	
			1	
[1	1	
$y = \sin x + \cos x$			<u></u>	
y = 0			1	
			1	
			1	
			1	

The graph of $y = 5x^4 - x^5$ has a point of inflection at

(A) (0,0) only

- (B) (3,162) only
- (C) (4,256) only

- (D) (0,0) and (3,162)
- (E) (0,0) and (4,256)

The MVT guarantees the existence of a special point on the graph of $y = \sqrt{x}$ between the (0, 0) and (4, 2). What are the coordinates of this point?

a) (2, 1) b) (1, 1) c) $(2, \sqrt{2})$ d) $(\frac{1}{2}, \frac{1}{\sqrt{2}})$ e) None of these

The *derivative* of $f(x) = \frac{x^4}{3} - \frac{x^5}{5}$ attains its maximum value at x = x

- (A) -1
- (B) 0
- (C) 1

An equation of the line tangent to $y = x^3 + 3x^2 + 2$ at its point of inflection is

(A) y = -6x - 6

- (B) y = -3x+1
- (C) y = 2x + 10

- (D) y = 3x 1
- (E) y = 4x + 1

The graph of $y = \frac{-5}{x-2}$ is concave downward for all values of x such that

- (A) x < 0
- (B) x<2
- (C) x < 5
- (D) x > 0

The absolute maximum value of $f(x) = x^3 - 3x^2 + 12$ on the closed interval [-2,4] occurs at x =

- (A) 4
- (B) 2
- (C) 1

How many critical points does the function $f(x) = (x+2)^5(x-3)^4$ have?

- (A) One
- (B) Two
- (C) Three
- (D) Five
- (E) Nine

1970 AB3/BC2

Consider the function f given by $f(x) = x^{\frac{4}{3}} + 4x^{\frac{1}{3}}$ on the interval $-8 \le x \le 8$.

- (a) Find the coordinates of all points at which the tangent to the curve is a horizontal line.
- Find the coordinates of all points at which the tangent to the curve is a vertical line
- Find the coordinates of all points at which the absolute maximum and absolute minimum occur.
- For what values of x is this function concave down?
- On the axes provided, sketch the graph of the function on this interval.

